Cargando…

GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers

We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We add...

Descripción completa

Detalles Bibliográficos
Autores principales: Mermel, Craig H, Schumacher, Steven E, Hill, Barbara, Meyerson, Matthew L, Beroukhim, Rameen, Getz, Gad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218867/
https://www.ncbi.nlm.nih.gov/pubmed/21527027
http://dx.doi.org/10.1186/gb-2011-12-4-r41
Descripción
Sumario:We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We additionally describe a probabilistic method for defining the boundaries of selected-for SCNA regions with user-defined confidence. Here we detail this revised computational approach, GISTIC2.0, and validate its performance in real and simulated datasets.