Cargando…
Novel multiplex technology for diagnostic characterization of rheumatoid arthritis
INTRODUCTION: The aim of this study was to develop a clinical-grade, automated, multiplex system for the differential diagnosis and molecular stratification of rheumatoid arthritis (RA). METHODS: We profiled autoantibodies, cytokines, and bone-turnover products in sera from 120 patients with a diagn...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218917/ https://www.ncbi.nlm.nih.gov/pubmed/21702928 http://dx.doi.org/10.1186/ar3383 |
_version_ | 1782216757104082944 |
---|---|
author | Chandra, Piyanka E Sokolove, Jeremy Hipp, Berthold G Lindstrom, Tamsin M Elder, James T Reveille, John D Eberl, Heike Klause, Ursula Robinson, William H |
author_facet | Chandra, Piyanka E Sokolove, Jeremy Hipp, Berthold G Lindstrom, Tamsin M Elder, James T Reveille, John D Eberl, Heike Klause, Ursula Robinson, William H |
author_sort | Chandra, Piyanka E |
collection | PubMed |
description | INTRODUCTION: The aim of this study was to develop a clinical-grade, automated, multiplex system for the differential diagnosis and molecular stratification of rheumatoid arthritis (RA). METHODS: We profiled autoantibodies, cytokines, and bone-turnover products in sera from 120 patients with a diagnosis of RA of < 6 months' duration, as well as in sera from 27 patients with ankylosing spondylitis, 28 patients with psoriatic arthritis, and 25 healthy individuals. We used a commercial bead assay to measure cytokine levels and developed an array assay based on novel multiplex technology (Immunological Multi-Parameter Chip Technology) to evaluate autoantibody reactivities and bone-turnover markers. Data were analyzed by Significance Analysis of Microarrays and hierarchical clustering software. RESULTS: We developed a highly reproducible, automated, multiplex biomarker assay that can reliably distinguish between RA patients and healthy individuals or patients with other inflammatory arthritides. Identification of distinct biomarker signatures enabled molecular stratification of early-stage RA into clinically relevant subtypes. In this initial study, multiplex measurement of a subset of the differentiating biomarkers provided high sensitivity and specificity in the diagnostic discrimination of RA: Use of 3 biomarkers yielded a sensitivity of 84.2% and a specificity of 93.8%, and use of 4 biomarkers a sensitivity of 59.2% and a specificity of 96.3%. CONCLUSIONS: The multiplex biomarker assay described herein has the potential to diagnose RA with greater sensitivity and specificity than do current clinical tests. Its ability to stratify RA patients in an automated and reproducible manner paves the way for the development of assays that can guide RA therapy. |
format | Online Article Text |
id | pubmed-3218917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32189172011-11-18 Novel multiplex technology for diagnostic characterization of rheumatoid arthritis Chandra, Piyanka E Sokolove, Jeremy Hipp, Berthold G Lindstrom, Tamsin M Elder, James T Reveille, John D Eberl, Heike Klause, Ursula Robinson, William H Arthritis Res Ther Research Article INTRODUCTION: The aim of this study was to develop a clinical-grade, automated, multiplex system for the differential diagnosis and molecular stratification of rheumatoid arthritis (RA). METHODS: We profiled autoantibodies, cytokines, and bone-turnover products in sera from 120 patients with a diagnosis of RA of < 6 months' duration, as well as in sera from 27 patients with ankylosing spondylitis, 28 patients with psoriatic arthritis, and 25 healthy individuals. We used a commercial bead assay to measure cytokine levels and developed an array assay based on novel multiplex technology (Immunological Multi-Parameter Chip Technology) to evaluate autoantibody reactivities and bone-turnover markers. Data were analyzed by Significance Analysis of Microarrays and hierarchical clustering software. RESULTS: We developed a highly reproducible, automated, multiplex biomarker assay that can reliably distinguish between RA patients and healthy individuals or patients with other inflammatory arthritides. Identification of distinct biomarker signatures enabled molecular stratification of early-stage RA into clinically relevant subtypes. In this initial study, multiplex measurement of a subset of the differentiating biomarkers provided high sensitivity and specificity in the diagnostic discrimination of RA: Use of 3 biomarkers yielded a sensitivity of 84.2% and a specificity of 93.8%, and use of 4 biomarkers a sensitivity of 59.2% and a specificity of 96.3%. CONCLUSIONS: The multiplex biomarker assay described herein has the potential to diagnose RA with greater sensitivity and specificity than do current clinical tests. Its ability to stratify RA patients in an automated and reproducible manner paves the way for the development of assays that can guide RA therapy. BioMed Central 2011 2011-06-24 /pmc/articles/PMC3218917/ /pubmed/21702928 http://dx.doi.org/10.1186/ar3383 Text en Copyright ©2011 Chandra et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited |
spellingShingle | Research Article Chandra, Piyanka E Sokolove, Jeremy Hipp, Berthold G Lindstrom, Tamsin M Elder, James T Reveille, John D Eberl, Heike Klause, Ursula Robinson, William H Novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
title | Novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
title_full | Novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
title_fullStr | Novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
title_full_unstemmed | Novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
title_short | Novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
title_sort | novel multiplex technology for diagnostic characterization of rheumatoid arthritis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218917/ https://www.ncbi.nlm.nih.gov/pubmed/21702928 http://dx.doi.org/10.1186/ar3383 |
work_keys_str_mv | AT chandrapiyankae novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT sokolovejeremy novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT hippbertholdg novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT lindstromtamsinm novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT elderjamest novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT reveillejohnd novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT eberlheike novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT klauseursula novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis AT robinsonwilliamh novelmultiplextechnologyfordiagnosticcharacterizationofrheumatoidarthritis |