Cargando…
Spatial based Expectation Maximizing (EM)
BACKGROUND: Expectation maximizing (EM) is one of the common approaches for image segmentation. METHODS: an improvement of the EM algorithm is proposed and its effectiveness for MRI brain image segmentation is investigated. In order to improve EM performance, the proposed algorithms incorporates nei...
Autor principal: | Balafar, M A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219670/ https://www.ncbi.nlm.nih.gov/pubmed/22029864 http://dx.doi.org/10.1186/1746-1596-6-103 |
Ejemplares similares
-
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training
por: Lam, Tin Y, et al.
Publicado: (2010) -
The Bayesian Expectation-Maximization-Maximization for the 3PLM
por: Guo, Shaoyang, et al.
Publicado: (2019) -
Probabilistic Record Linkage (PRL) advances between Surveillance Data and HES datasets using the Expectation-Maximization (EM) algorithm
por: Panagiotopoulos, Nikolaos, et al.
Publicado: (2017) -
Expectation-Maximization Binary Clustering for Behavioural Annotation
por: Garriga, Joan, et al.
Publicado: (2016) -
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
por: Bi, Xia-an, et al.
Publicado: (2017)