Cargando…

Duodenal PKC-δ and Cholecystokinin Signaling Axis Regulates Glucose Production

OBJECTIVE: Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ a...

Descripción completa

Detalles Bibliográficos
Autores principales: Breen, Danna M., Yue, Jessica T.Y., Rasmussen, Brittany A., Kokorovic, Andrea, Cheung, Grace W.C., Lam, Tony K.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219935/
https://www.ncbi.nlm.nih.gov/pubmed/21984583
http://dx.doi.org/10.2337/db11-0852
Descripción
Sumario:OBJECTIVE: Metabolism of long-chain fatty acids within the duodenum leads to the activation of duodenal mucosal protein kinase C (PKC)-δ and the cholecystokinin (CCK)-A receptor to lower glucose production through a neuronal network. However, the interfunctional relationship between duodenal PKC-δ and CCK remains elusive. Although long-chain fatty acids activate PKC to stimulate the release of CCK in CCK-secreting cells, CCK has also been found to activate PKC-δ in pancreatic acinar cells. We here evaluate whether activation of duodenal mucosal PKC-δ lies upstream (and/or downstream) of CCK signaling to lower glucose production. RESEARCH DESIGN AND METHODS: We first determined with immunofluorescence whether PKC-δ and CCK were colocalized within the duodenal mucosa. We then performed gain- and loss-of-function experiments targeting duodenal PKC-δ and the CCK-A receptor and evaluated the impact on changes in glucose kinetics during pancreatic (basal insulin) clamps in rats in vivo. RESULTS: Immunostaining of PKC-δ was found to colocalize with CCK in the duodenal mucosa. Intraduodenal coinfusion of either the CCK-A receptor antagonist MK-329 or CR-1409 with the PKC activator negated the ability of duodenal mucosal PKC-δ activation to lower glucose production during the pancreatic clamps in normal rats. Conversely, molecular and pharmacological inhibition of duodenal PKC-δ did not negate the ability of the duodenal CCK-A receptor agonist CCK-8 to lower glucose production, indicating that activation of duodenal PKC-δ lies upstream (and not downstream) of CCK signaling. Finally, intraduodenal PKC activator infusion failed to lower glucose production in rats with high-fat diet–induced duodenal CCK resistance. CONCLUSIONS: In summary, activation of duodenal PKC-δ leads to the stimulation of CCK release and activation of the CCK-A receptor signaling axis to lower glucose production in normal rats, but fails to bypass duodenal CCK-resistance in high fat-fed rats.