Cargando…

Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation

This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashburner, John, Friston, Karl J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221052/
https://www.ncbi.nlm.nih.gov/pubmed/21216294
http://dx.doi.org/10.1016/j.neuroimage.2010.12.049
Descripción
Sumario:This paper presents a nonlinear image registration algorithm based on the setting of Large Deformation Diffeomorphic Metric Mapping (LDDMM), but with a more efficient optimisation scheme — both in terms of memory required and the number of iterations required to reach convergence. Rather than perform a variational optimisation on a series of velocity fields, the algorithm is formulated to use a geodesic shooting procedure, so that only an initial velocity is estimated. A Gauss–Newton optimisation strategy is used to achieve faster convergence. The algorithm was evaluated using freely available manually labelled datasets, and found to compare favourably with other inter-subject registration algorithms evaluated using the same data.