Cargando…

Vessel Arterial-Venous Plasticity in Adult Neovascularization

OBJECTIVE: Proper arterial and venous specification is a hallmark of functional vascular networks. While arterial-venous identity is genetically pre-determined during embryo development, it is unknown whether an analogous pre-specification occurs in adult neovascularization. Our goal is to determine...

Descripción completa

Detalles Bibliográficos
Autores principales: Nunes, Sara S., Rekapally, Harish, Chang, Carlos C., Hoying, James B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221655/
https://www.ncbi.nlm.nih.gov/pubmed/22132096
http://dx.doi.org/10.1371/journal.pone.0027332
Descripción
Sumario:OBJECTIVE: Proper arterial and venous specification is a hallmark of functional vascular networks. While arterial-venous identity is genetically pre-determined during embryo development, it is unknown whether an analogous pre-specification occurs in adult neovascularization. Our goal is to determine whether vessel arterial-venous specification in adult neovascularization is pre-determined by the identity of the originating vessels. METHODS AND RESULTS: We assessed identity specification during neovascularization by implanting isolated microvessels of arterial identity from both mice and rats and assessing the identity outcomes of the resulting, newly formed vasculature. These microvessels of arterial identity spontaneously formed a stereotypical, perfused microcirculation comprised of the full complement of microvessel types intrinsic to a mature microvasculature. Changes in microvessel identity occurred during sprouting angiogenesis, with neovessels displaying an ambiguous arterial-venous phenotype associated with reduced EphrinB2 phosphorylation. CONCLUSIONS: Our findings indicate that microvessel arterial-venous identity in adult neovascularization is not necessarily pre-determined and that adult microvessels display a considerable level of phenotypic plasticity during neovascularization. In addition, we show that vessels of arterial identity also hold the potential to undergo sprouting angiogenesis.