Cargando…
Expedited batch processing and analysis of transposon insertions
BACKGROUND: With advances in sequencing technology, greater and greater amounts of eukaryotic genome data are becoming available. Often, large portions of these genomes consist of transposable elements, frequently accounting for 50% or more in vertebrates. Each transposable element family may have t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222620/ https://www.ncbi.nlm.nih.gov/pubmed/22054356 http://dx.doi.org/10.1186/1756-0500-4-482 |
Sumario: | BACKGROUND: With advances in sequencing technology, greater and greater amounts of eukaryotic genome data are becoming available. Often, large portions of these genomes consist of transposable elements, frequently accounting for 50% or more in vertebrates. Each transposable element family may have thousands or tens of thousands of individual copies within a given genome, and therefore it can take an exorbitant amount of time and effort to process data in a meaningful fashion. FINDINGS: In order to combat this problem, we developed a set of bioinformatics techniques and programs to streamline the analysis. This includes a unique Perl script which automates the process of taking BLAST, Repeatmasker and similar data to extract and manipulate the hit sequences from the genome. This script, called Process_hits uses an object-oriented methodology to compile all hit locations from a given file for processing, organize this data into useable categories, and output it in multiple formats. CONCLUSIONS: The program proved capable of handling large amounts of transposon data in an efficient fashion. It is equipped with a number of useful sub-functions, each of which is contained within its own sub-module to allow for greater expandability and as a foundation for future program design. |
---|