Cargando…

How Awareness Changes the Relative Weights of Evidence During Human Decision-Making

Human decisions are based on accumulating evidence over time for different options. Here we ask a simple question: How is the accumulation of evidence affected by the level of awareness of the information? We examined the influence of awareness on decision-making using combined behavioral methods an...

Descripción completa

Detalles Bibliográficos
Autores principales: de Lange, Floris P., van Gaal, Simon, Lamme, Victor A. F., Dehaene, Stanislas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222633/
https://www.ncbi.nlm.nih.gov/pubmed/22131904
http://dx.doi.org/10.1371/journal.pbio.1001203
Descripción
Sumario:Human decisions are based on accumulating evidence over time for different options. Here we ask a simple question: How is the accumulation of evidence affected by the level of awareness of the information? We examined the influence of awareness on decision-making using combined behavioral methods and magneto-encephalography (MEG). Participants were required to make decisions by accumulating evidence over a series of visually presented arrow stimuli whose visibility was modulated by masking. Behavioral results showed that participants could accumulate evidence under both high and low visibility. However, a top-down strategic modulation of the flow of incoming evidence was only present for stimuli with high visibility: once enough evidence had been accrued, participants strategically reduced the impact of new incoming stimuli. Also, decision-making speed and confidence were strongly modulated by the strength of the evidence for high-visible but not low-visible evidence, even though direct priming effects were identical for both types of stimuli. Neural recordings revealed that, while initial perceptual processing was independent of visibility, there was stronger top-down amplification for stimuli with high visibility than low visibility. Furthermore, neural markers of evidence accumulation over occipito-parietal cortex showed a strategic bias only for highly visible sensory information, speeding up processing and reducing neural computations related to the decision process. Our results indicate that the level of awareness of information changes decision-making: while accumulation of evidence already exists under low visibility conditions, high visibility allows evidence to be accumulated up to a higher level, leading to important strategical top-down changes in decision-making. Our results therefore suggest a potential role of awareness in deploying flexible strategies for biasing information acquisition in line with one's expectations and goals.