Cargando…

Occupational Solvent Exposure and Brain Function: An fMRI Study

Background: Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. Objectives: We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function betwee...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Cheuk Ying, Carpenter, David M., Eaves, Emily L., Ng, Johnny, Ganeshalingam, Nimalya, Weisel, Clifford, Qian, Hua, Lange, Gudrun, Fiedler, Nancy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222975/
https://www.ncbi.nlm.nih.gov/pubmed/21296712
http://dx.doi.org/10.1289/ehp.1002529
Descripción
Sumario:Background: Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. Objectives: We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Methods: Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Results: Solvent-exposed workers’ performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices—areas serving working memory function and attention—was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. Conclusions: This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work.