Cargando…

Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)

Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Vizcay-Barrena, Gema, Webb, Stephen E. D., Martin-Fernandez, Marisa L., Wilson, Zoe A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223039/
https://www.ncbi.nlm.nih.gov/pubmed/21865179
http://dx.doi.org/10.1093/jxb/err212
_version_ 1782217245159587840
author Vizcay-Barrena, Gema
Webb, Stephen E. D.
Martin-Fernandez, Marisa L.
Wilson, Zoe A.
author_facet Vizcay-Barrena, Gema
Webb, Stephen E. D.
Martin-Fernandez, Marisa L.
Wilson, Zoe A.
author_sort Vizcay-Barrena, Gema
collection PubMed
description Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging.
format Online
Article
Text
id pubmed-3223039
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-32230392011-11-23 Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) Vizcay-Barrena, Gema Webb, Stephen E. D. Martin-Fernandez, Marisa L. Wilson, Zoe A. J Exp Bot Research Papers Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging. Oxford University Press 2011-11 2011-08-23 /pmc/articles/PMC3223039/ /pubmed/21865179 http://dx.doi.org/10.1093/jxb/err212 Text en © 2011 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)
spellingShingle Research Papers
Vizcay-Barrena, Gema
Webb, Stephen E. D.
Martin-Fernandez, Marisa L.
Wilson, Zoe A.
Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)
title Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)
title_full Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)
title_fullStr Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)
title_full_unstemmed Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)
title_short Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)
title_sort subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (tirfm)
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223039/
https://www.ncbi.nlm.nih.gov/pubmed/21865179
http://dx.doi.org/10.1093/jxb/err212
work_keys_str_mv AT vizcaybarrenagema subcellularandsinglemoleculeimagingofplantfluorescentproteinsusingtotalinternalreflectionfluorescencemicroscopytirfm
AT webbstephened subcellularandsinglemoleculeimagingofplantfluorescentproteinsusingtotalinternalreflectionfluorescencemicroscopytirfm
AT martinfernandezmarisal subcellularandsinglemoleculeimagingofplantfluorescentproteinsusingtotalinternalreflectionfluorescencemicroscopytirfm
AT wilsonzoea subcellularandsinglemoleculeimagingofplantfluorescentproteinsusingtotalinternalreflectionfluorescencemicroscopytirfm