Cargando…

New investigation of phase equilibria in the system Al–Cu–Si

The phase equilibria and invariant reactions in the system Al–Cu–Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isother...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponweiser, Norbert, Richter, Klaus W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223527/
https://www.ncbi.nlm.nih.gov/pubmed/22287828
http://dx.doi.org/10.1016/j.jallcom.2011.09.076
Descripción
Sumario:The phase equilibria and invariant reactions in the system Al–Cu–Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu–Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al–Cu and Cu–Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.