Cargando…
RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis
BACKGROUND: The Gene Ontology (GO) Consortium organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. Tools such as GoMiner can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223614/ https://www.ncbi.nlm.nih.gov/pubmed/21310028 http://dx.doi.org/10.1186/1471-2105-12-52 |
_version_ | 1782217306201391104 |
---|---|
author | Zeeberg, Barry R Liu, Hongfang Kahn, Ari B Ehler, Martin Rajapakse, Vinodh N Bonner, Robert F Brown, Jacob D Brooks, Brian P Larionov, Vladimir L Reinhold, William Weinstein, John N Pommier, Yves G |
author_facet | Zeeberg, Barry R Liu, Hongfang Kahn, Ari B Ehler, Martin Rajapakse, Vinodh N Bonner, Robert F Brown, Jacob D Brooks, Brian P Larionov, Vladimir L Reinhold, William Weinstein, John N Pommier, Yves G |
author_sort | Zeeberg, Barry R |
collection | PubMed |
description | BACKGROUND: The Gene Ontology (GO) Consortium organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. Tools such as GoMiner can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Two or more of the categories are often redundant, in the sense that identical or nearly-identical sets of genes map to the categories. The redundancy might typically inflate the report of significant categories by a factor of three-fold, create an illusion of an overly long list of significant categories, and obscure the relevant biological interpretation. RESULTS: We now introduce a new resource, RedundancyMiner, that de-replicates the redundant and nearly-redundant GO categories that had been determined by first running GoMiner. The main algorithm of RedundancyMiner, MultiClust, performs a novel form of cluster analysis in which a GO category might belong to several category clusters. Each category cluster follows a "complete linkage" paradigm. The metric is a similarity measure that captures the overlap in gene mapping between pairs of categories. CONCLUSIONS: RedundancyMiner effectively eliminated redundancies from a set of GO categories. For illustration, we have applied it to the clarification of the results arising from two current studies: (1) assessment of the gene expression profiles obtained by laser capture microdissection (LCM) of serial cryosections of the retina at the site of final optic fissure closure in the mouse embryos at specific embryonic stages, and (2) analysis of a conceptual data set obtained by examining a list of genes deemed to be "kinetochore" genes. |
format | Online Article Text |
id | pubmed-3223614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32236142011-11-26 RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis Zeeberg, Barry R Liu, Hongfang Kahn, Ari B Ehler, Martin Rajapakse, Vinodh N Bonner, Robert F Brown, Jacob D Brooks, Brian P Larionov, Vladimir L Reinhold, William Weinstein, John N Pommier, Yves G BMC Bioinformatics Software BACKGROUND: The Gene Ontology (GO) Consortium organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. Tools such as GoMiner can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Two or more of the categories are often redundant, in the sense that identical or nearly-identical sets of genes map to the categories. The redundancy might typically inflate the report of significant categories by a factor of three-fold, create an illusion of an overly long list of significant categories, and obscure the relevant biological interpretation. RESULTS: We now introduce a new resource, RedundancyMiner, that de-replicates the redundant and nearly-redundant GO categories that had been determined by first running GoMiner. The main algorithm of RedundancyMiner, MultiClust, performs a novel form of cluster analysis in which a GO category might belong to several category clusters. Each category cluster follows a "complete linkage" paradigm. The metric is a similarity measure that captures the overlap in gene mapping between pairs of categories. CONCLUSIONS: RedundancyMiner effectively eliminated redundancies from a set of GO categories. For illustration, we have applied it to the clarification of the results arising from two current studies: (1) assessment of the gene expression profiles obtained by laser capture microdissection (LCM) of serial cryosections of the retina at the site of final optic fissure closure in the mouse embryos at specific embryonic stages, and (2) analysis of a conceptual data set obtained by examining a list of genes deemed to be "kinetochore" genes. BioMed Central 2011-02-10 /pmc/articles/PMC3223614/ /pubmed/21310028 http://dx.doi.org/10.1186/1471-2105-12-52 Text en Copyright © 2011 Zeeberg et al; licensee BioMed Central Ltd. https://creativecommons.org/licenses/by/2.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0 (https://creativecommons.org/licenses/by/2.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Zeeberg, Barry R Liu, Hongfang Kahn, Ari B Ehler, Martin Rajapakse, Vinodh N Bonner, Robert F Brown, Jacob D Brooks, Brian P Larionov, Vladimir L Reinhold, William Weinstein, John N Pommier, Yves G RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis |
title | RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis |
title_full | RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis |
title_fullStr | RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis |
title_full_unstemmed | RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis |
title_short | RedundancyMiner: De-replication of redundant GO categories in microarray and proteomics analysis |
title_sort | redundancyminer: de-replication of redundant go categories in microarray and proteomics analysis |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223614/ https://www.ncbi.nlm.nih.gov/pubmed/21310028 http://dx.doi.org/10.1186/1471-2105-12-52 |
work_keys_str_mv | AT zeebergbarryr redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT liuhongfang redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT kahnarib redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT ehlermartin redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT rajapaksevinodhn redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT bonnerrobertf redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT brownjacobd redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT brooksbrianp redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT larionovvladimirl redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT reinholdwilliam redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT weinsteinjohnn redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis AT pommieryvesg redundancyminerdereplicationofredundantgocategoriesinmicroarrayandproteomicsanalysis |