Cargando…
An empirical evaluation of imputation accuracy for association statistics reveals increased type-I error rates in genome-wide associations
BACKGROUND: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical...
Autores principales: | Almeida, Marcio AA, Oliveira, Paulo SL, Pereira, Tiago V, Krieger, José E, Pereira, Alexandre C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224203/ https://www.ncbi.nlm.nih.gov/pubmed/21251252 http://dx.doi.org/10.1186/1471-2156-12-10 |
Ejemplares similares
-
Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies
por: Hao, Ke, et al.
Publicado: (2009) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Accuracy of genome-wide imputation in Braford and Hereford beef cattle
por: Piccoli, Mario L, et al.
Publicado: (2014) -
Estimating the accuracy of geographical imputation
por: Henry, Kevin A, et al.
Publicado: (2008) -
An empirical evaluation of genotype imputation of ancient DNA
por: Ausmees, Kristiina, et al.
Publicado: (2022)