Cargando…
Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features
BACKGROUND: Machine learning methods are nowadays used for many biological prediction problems involving drugs, ligands or polypeptide segments of a protein. In order to build a prediction model a so called training data set of molecules with measured target properties is needed. For many such probl...
Autores principales: | Demir-Kavuk, Ozgur, Kamada, Mayumi, Akutsu, Tatsuya, Knapp, Ernst-Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224215/ https://www.ncbi.nlm.nih.gov/pubmed/22026913 http://dx.doi.org/10.1186/1471-2105-12-412 |
Ejemplares similares
-
Prediction of Protein-Protein Interaction Strength Using Domain Features with Supervised Regression
por: Kamada, Mayumi, et al.
Publicado: (2014) -
Regularized F-Measure Maximization for Feature Selection and Classification
por: Liu, Zhenqiu, et al.
Publicado: (2009) -
Feature weight estimation for gene selection: a local hyperlinear learning approach
por: Cai, Hongmin, et al.
Publicado: (2014) -
Sparse generalized linear model with L(0) approximation for feature selection and prediction with big omics data
por: Liu, Zhenqiu, et al.
Publicado: (2017) -
Spatial-frequency features of radiation produced by a step-wise tapered undulator
por: Trebushinin, Andrei, et al.
Publicado: (2021)