Cargando…
Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast
BACKGROUND: In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the int...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224377/ https://www.ncbi.nlm.nih.gov/pubmed/21981773 http://dx.doi.org/10.1186/1471-2164-12-489 |
_version_ | 1782217369924403200 |
---|---|
author | Deniz, Özgen Flores, Oscar Battistini, Federica Pérez, Alberto Soler-López, Montserrat Orozco, Modesto |
author_facet | Deniz, Özgen Flores, Oscar Battistini, Federica Pérez, Alberto Soler-López, Montserrat Orozco, Modesto |
author_sort | Deniz, Özgen |
collection | PubMed |
description | BACKGROUND: In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. RESULTS: Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. CONCLUSIONS: Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression. |
format | Online Article Text |
id | pubmed-3224377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32243772011-11-27 Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast Deniz, Özgen Flores, Oscar Battistini, Federica Pérez, Alberto Soler-López, Montserrat Orozco, Modesto BMC Genomics Research Article BACKGROUND: In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. RESULTS: Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. CONCLUSIONS: Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression. BioMed Central 2011-10-07 /pmc/articles/PMC3224377/ /pubmed/21981773 http://dx.doi.org/10.1186/1471-2164-12-489 Text en Copyright ©2011 Deniz et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Deniz, Özgen Flores, Oscar Battistini, Federica Pérez, Alberto Soler-López, Montserrat Orozco, Modesto Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
title | Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
title_full | Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
title_fullStr | Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
title_full_unstemmed | Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
title_short | Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
title_sort | physical properties of naked dna influence nucleosome positioning and correlate with transcription start and termination sites in yeast |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224377/ https://www.ncbi.nlm.nih.gov/pubmed/21981773 http://dx.doi.org/10.1186/1471-2164-12-489 |
work_keys_str_mv | AT denizozgen physicalpropertiesofnakeddnainfluencenucleosomepositioningandcorrelatewithtranscriptionstartandterminationsitesinyeast AT floresoscar physicalpropertiesofnakeddnainfluencenucleosomepositioningandcorrelatewithtranscriptionstartandterminationsitesinyeast AT battistinifederica physicalpropertiesofnakeddnainfluencenucleosomepositioningandcorrelatewithtranscriptionstartandterminationsitesinyeast AT perezalberto physicalpropertiesofnakeddnainfluencenucleosomepositioningandcorrelatewithtranscriptionstartandterminationsitesinyeast AT solerlopezmontserrat physicalpropertiesofnakeddnainfluencenucleosomepositioningandcorrelatewithtranscriptionstartandterminationsitesinyeast AT orozcomodesto physicalpropertiesofnakeddnainfluencenucleosomepositioningandcorrelatewithtranscriptionstartandterminationsitesinyeast |