Cargando…

Classification of breast tissue in mammograms using efficient coding

BACKGROUND: Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Daniel D, Campos, Lúcio F, Barros, Allan K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224537/
https://www.ncbi.nlm.nih.gov/pubmed/21702953
http://dx.doi.org/10.1186/1475-925X-10-55
_version_ 1782217404330278912
author Costa, Daniel D
Campos, Lúcio F
Barros, Allan K
author_facet Costa, Daniel D
Campos, Lúcio F
Barros, Allan K
author_sort Costa, Daniel D
collection PubMed
description BACKGROUND: Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. METHODS: In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. RESULTS: The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. CONCLUSIONS: Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation.
format Online
Article
Text
id pubmed-3224537
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32245372011-11-27 Classification of breast tissue in mammograms using efficient coding Costa, Daniel D Campos, Lúcio F Barros, Allan K Biomed Eng Online Research BACKGROUND: Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. METHODS: In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. RESULTS: The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. CONCLUSIONS: Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation. BioMed Central 2011-06-24 /pmc/articles/PMC3224537/ /pubmed/21702953 http://dx.doi.org/10.1186/1475-925X-10-55 Text en Copyright ©2011 Costa et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Costa, Daniel D
Campos, Lúcio F
Barros, Allan K
Classification of breast tissue in mammograms using efficient coding
title Classification of breast tissue in mammograms using efficient coding
title_full Classification of breast tissue in mammograms using efficient coding
title_fullStr Classification of breast tissue in mammograms using efficient coding
title_full_unstemmed Classification of breast tissue in mammograms using efficient coding
title_short Classification of breast tissue in mammograms using efficient coding
title_sort classification of breast tissue in mammograms using efficient coding
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224537/
https://www.ncbi.nlm.nih.gov/pubmed/21702953
http://dx.doi.org/10.1186/1475-925X-10-55
work_keys_str_mv AT costadanield classificationofbreasttissueinmammogramsusingefficientcoding
AT camposluciof classificationofbreasttissueinmammogramsusingefficientcoding
AT barrosallank classificationofbreasttissueinmammogramsusingefficientcoding