Cargando…
Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models
In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. T...
Autores principales: | Baker, Syed Murtuza, Poskar, C Hart, Junker, Björn H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224596/ https://www.ncbi.nlm.nih.gov/pubmed/21989173 http://dx.doi.org/10.1186/1687-4153-2011-7 |
Ejemplares similares
-
A unified framework for estimating parameters of kinetic biological models
por: Baker, Syed Murtuza, et al.
Publicado: (2015) -
Unscented Kalman Filter-Based Robust State and Parameter Estimation for Free Radical Polymerization of Styrene with Variable Parameters
por: Zhang, Zhenhui, et al.
Publicado: (2022) -
Parameter and state estimation of backers yeast cultivation with a gas sensor array and unscented Kalman filter
por: Yousefi‐Darani, Abdolrahimahim, et al.
Publicado: (2020) -
Estimation of states and parameters of multi-axle distributed electric vehicle based on dual unscented Kalman filter
por: Pei, Xiaofei, et al.
Publicado: (2019) -
Unscented Kalman filter for airship model uncertainties and wind disturbance estimation
por: Wasim, Muhammad, et al.
Publicado: (2021)