Cargando…

Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

BACKGROUND: Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. RESULTS: Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lig...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendu, Venugopal, Harman-Ware, Anne E, Crocker, Mark, Jae, Jungho, Stork, Jozsef, Morton, Samuel, Placido, Andrew, Huber, George, DeBolt, Seth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224766/
https://www.ncbi.nlm.nih.gov/pubmed/22018114
http://dx.doi.org/10.1186/1754-6834-4-43
Descripción
Sumario:BACKGROUND: Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. RESULTS: Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. CONCLUSIONS: Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.