Cargando…

Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting

Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through s...

Descripción completa

Detalles Bibliográficos
Autores principales: Goel, Saurav, Luo, Xichun, Reuben, Robert L, Rashid, Waleed Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224798/
https://www.ncbi.nlm.nih.gov/pubmed/22078069
http://dx.doi.org/10.1186/1556-276X-6-589
Descripción
Sumario:Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp(3)-sp(2 )order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp(3)-sp(2 )order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.