Cargando…

Hepatitis C virus core protein induces apoptosis-like caspase independent cell death

BACKGROUND: Hepatitis C virus (HCV) associated liver diseases may be related to apoptotic processes. Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency to interact with different apoptosis inducing agents. METHODS AND RESULTS: The use of a tightl...

Descripción completa

Detalles Bibliográficos
Autores principales: Berg, Christoph P, Schlosser, Stephan F, Neukirchen, Dorothee KH, Papadakis, Costa, Gregor, Michael, Wesselborg, Sebastian, Stein, Gerburg M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224943/
https://www.ncbi.nlm.nih.gov/pubmed/19951438
http://dx.doi.org/10.1186/1743-422X-6-213
_version_ 1782217465255690240
author Berg, Christoph P
Schlosser, Stephan F
Neukirchen, Dorothee KH
Papadakis, Costa
Gregor, Michael
Wesselborg, Sebastian
Stein, Gerburg M
author_facet Berg, Christoph P
Schlosser, Stephan F
Neukirchen, Dorothee KH
Papadakis, Costa
Gregor, Michael
Wesselborg, Sebastian
Stein, Gerburg M
author_sort Berg, Christoph P
collection PubMed
description BACKGROUND: Hepatitis C virus (HCV) associated liver diseases may be related to apoptotic processes. Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency to interact with different apoptosis inducing agents. METHODS AND RESULTS: The use of a tightly adjustable tetracycline (Tet)-dependent HCV protein expression cell system with the founder osteosarcoma cell line U-2 OS allowed switch-off and on of the endogenous production of HCV proteins. Analyzed were cell lines expressing the HCV polyprotein, the core protein, protein complexes of the core, envelope proteins E1, E2 and p7, and non-structural proteins NS3 and NS4A, NS4B or NS5A and NS5B. Apoptosis was measured mainly by the detection of hypodiploid apoptotic nuclei in the absence or presence of mitomycin C, etoposide, TRAIL and an agonistic anti-CD95 antibody. To further characterize cell death induction, a variety of different methods like fluorescence microscopy, TUNEL (terminal deoxynucleotidyl transferase (TdT)-catalyzed deoxyuridinephosphate (dUTP)-nick end labeling) assay, Annexin V staining, Western blot and caspase activation assays were included into our analysis. Two cell lines expressing the core protein but not the total polyprotein exerted a strong apoptotic effect, while the other cell lines did not induce any or only a slight effect by measuring the hypodiploid nuclei. Cell death induction was caspase-independent since it could not be blocked by zVAD-fmk. Moreover, caspase activity was absent in Western blot analysis and fluorometric assays while typical apoptosis-associated morphological features like the membrane blebbing and nuclei condensation and fragmentation could be clearly observed by microscopy. None of the HCV proteins influenced the apoptotic effect mediated via the mitochondrial apoptosis pathway while only the core protein enhanced death-receptor-mediated apoptosis. CONCLUSION: Our data showed a caspase-independent apoptosis-like effect of the core protein, which seems to be inhibited in the presence of further HCV proteins like the non structural (NS) proteins. This observation could be of relevance for the viral spread since induction of an apoptosis-like cell death by the core protein may have some impact on the release of the HCV particles from the host cell.
format Online
Article
Text
id pubmed-3224943
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32249432011-11-29 Hepatitis C virus core protein induces apoptosis-like caspase independent cell death Berg, Christoph P Schlosser, Stephan F Neukirchen, Dorothee KH Papadakis, Costa Gregor, Michael Wesselborg, Sebastian Stein, Gerburg M Virol J Research BACKGROUND: Hepatitis C virus (HCV) associated liver diseases may be related to apoptotic processes. Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency to interact with different apoptosis inducing agents. METHODS AND RESULTS: The use of a tightly adjustable tetracycline (Tet)-dependent HCV protein expression cell system with the founder osteosarcoma cell line U-2 OS allowed switch-off and on of the endogenous production of HCV proteins. Analyzed were cell lines expressing the HCV polyprotein, the core protein, protein complexes of the core, envelope proteins E1, E2 and p7, and non-structural proteins NS3 and NS4A, NS4B or NS5A and NS5B. Apoptosis was measured mainly by the detection of hypodiploid apoptotic nuclei in the absence or presence of mitomycin C, etoposide, TRAIL and an agonistic anti-CD95 antibody. To further characterize cell death induction, a variety of different methods like fluorescence microscopy, TUNEL (terminal deoxynucleotidyl transferase (TdT)-catalyzed deoxyuridinephosphate (dUTP)-nick end labeling) assay, Annexin V staining, Western blot and caspase activation assays were included into our analysis. Two cell lines expressing the core protein but not the total polyprotein exerted a strong apoptotic effect, while the other cell lines did not induce any or only a slight effect by measuring the hypodiploid nuclei. Cell death induction was caspase-independent since it could not be blocked by zVAD-fmk. Moreover, caspase activity was absent in Western blot analysis and fluorometric assays while typical apoptosis-associated morphological features like the membrane blebbing and nuclei condensation and fragmentation could be clearly observed by microscopy. None of the HCV proteins influenced the apoptotic effect mediated via the mitochondrial apoptosis pathway while only the core protein enhanced death-receptor-mediated apoptosis. CONCLUSION: Our data showed a caspase-independent apoptosis-like effect of the core protein, which seems to be inhibited in the presence of further HCV proteins like the non structural (NS) proteins. This observation could be of relevance for the viral spread since induction of an apoptosis-like cell death by the core protein may have some impact on the release of the HCV particles from the host cell. BioMed Central 2009-12-01 /pmc/articles/PMC3224943/ /pubmed/19951438 http://dx.doi.org/10.1186/1743-422X-6-213 Text en Copyright ©2009 Berg et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Berg, Christoph P
Schlosser, Stephan F
Neukirchen, Dorothee KH
Papadakis, Costa
Gregor, Michael
Wesselborg, Sebastian
Stein, Gerburg M
Hepatitis C virus core protein induces apoptosis-like caspase independent cell death
title Hepatitis C virus core protein induces apoptosis-like caspase independent cell death
title_full Hepatitis C virus core protein induces apoptosis-like caspase independent cell death
title_fullStr Hepatitis C virus core protein induces apoptosis-like caspase independent cell death
title_full_unstemmed Hepatitis C virus core protein induces apoptosis-like caspase independent cell death
title_short Hepatitis C virus core protein induces apoptosis-like caspase independent cell death
title_sort hepatitis c virus core protein induces apoptosis-like caspase independent cell death
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224943/
https://www.ncbi.nlm.nih.gov/pubmed/19951438
http://dx.doi.org/10.1186/1743-422X-6-213
work_keys_str_mv AT bergchristophp hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath
AT schlosserstephanf hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath
AT neukirchendorotheekh hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath
AT papadakiscosta hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath
AT gregormichael hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath
AT wesselborgsebastian hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath
AT steingerburgm hepatitiscviruscoreproteininducesapoptosislikecaspaseindependentcelldeath