Cargando…
Semantic inference using chemogenomics data for drug discovery
BACKGROUND: Semantic Web Technology (SWT) makes it possible to integrate and search the large volume of life science datasets in the public domain, as demonstrated by well-known linked data projects such as LODD, Bio2RDF, and Chem2Bio2RDF. Integration of these sets creates large networks of informat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225082/ https://www.ncbi.nlm.nih.gov/pubmed/21699718 http://dx.doi.org/10.1186/1471-2105-12-256 |
_version_ | 1782217476139909120 |
---|---|
author | Zhu, Qian Sun, Yuyin Challa, Sashikiran Ding, Ying Lajiness, Michael S Wild, David J |
author_facet | Zhu, Qian Sun, Yuyin Challa, Sashikiran Ding, Ying Lajiness, Michael S Wild, David J |
author_sort | Zhu, Qian |
collection | PubMed |
description | BACKGROUND: Semantic Web Technology (SWT) makes it possible to integrate and search the large volume of life science datasets in the public domain, as demonstrated by well-known linked data projects such as LODD, Bio2RDF, and Chem2Bio2RDF. Integration of these sets creates large networks of information. We have previously described a tool called WENDI for aggregating information pertaining to new chemical compounds, effectively creating evidence paths relating the compounds to genes, diseases and so on. In this paper we examine the utility of automatically inferring new compound-disease associations (and thus new links in the network) based on semantically marked-up versions of these evidence paths, rule-sets and inference engines. RESULTS: Through the implementation of a semantic inference algorithm, rule set, Semantic Web methods (RDF, OWL and SPARQL) and new interfaces, we have created a new tool called Chemogenomic Explorer that uses networks of ontologically annotated RDF statements along with deductive reasoning tools to infer new associations between the query structure and genes and diseases from WENDI results. The tool then permits interactive clustering and filtering of these evidence paths. CONCLUSIONS: We present a new aggregate approach to inferring links between chemical compounds and diseases using semantic inference. This approach allows multiple evidence paths between compounds and diseases to be identified using a rule-set and semantically annotated data, and for these evidence paths to be clustered to show overall evidence linking the compound to a disease. We believe this is a powerful approach, because it allows compound-disease relationships to be ranked by the amount of evidence supporting them. |
format | Online Article Text |
id | pubmed-3225082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32250822011-11-29 Semantic inference using chemogenomics data for drug discovery Zhu, Qian Sun, Yuyin Challa, Sashikiran Ding, Ying Lajiness, Michael S Wild, David J BMC Bioinformatics Research Article BACKGROUND: Semantic Web Technology (SWT) makes it possible to integrate and search the large volume of life science datasets in the public domain, as demonstrated by well-known linked data projects such as LODD, Bio2RDF, and Chem2Bio2RDF. Integration of these sets creates large networks of information. We have previously described a tool called WENDI for aggregating information pertaining to new chemical compounds, effectively creating evidence paths relating the compounds to genes, diseases and so on. In this paper we examine the utility of automatically inferring new compound-disease associations (and thus new links in the network) based on semantically marked-up versions of these evidence paths, rule-sets and inference engines. RESULTS: Through the implementation of a semantic inference algorithm, rule set, Semantic Web methods (RDF, OWL and SPARQL) and new interfaces, we have created a new tool called Chemogenomic Explorer that uses networks of ontologically annotated RDF statements along with deductive reasoning tools to infer new associations between the query structure and genes and diseases from WENDI results. The tool then permits interactive clustering and filtering of these evidence paths. CONCLUSIONS: We present a new aggregate approach to inferring links between chemical compounds and diseases using semantic inference. This approach allows multiple evidence paths between compounds and diseases to be identified using a rule-set and semantically annotated data, and for these evidence paths to be clustered to show overall evidence linking the compound to a disease. We believe this is a powerful approach, because it allows compound-disease relationships to be ranked by the amount of evidence supporting them. BioMed Central 2011-06-23 /pmc/articles/PMC3225082/ /pubmed/21699718 http://dx.doi.org/10.1186/1471-2105-12-256 Text en Copyright ©2011 Zhu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhu, Qian Sun, Yuyin Challa, Sashikiran Ding, Ying Lajiness, Michael S Wild, David J Semantic inference using chemogenomics data for drug discovery |
title | Semantic inference using chemogenomics data for drug discovery |
title_full | Semantic inference using chemogenomics data for drug discovery |
title_fullStr | Semantic inference using chemogenomics data for drug discovery |
title_full_unstemmed | Semantic inference using chemogenomics data for drug discovery |
title_short | Semantic inference using chemogenomics data for drug discovery |
title_sort | semantic inference using chemogenomics data for drug discovery |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225082/ https://www.ncbi.nlm.nih.gov/pubmed/21699718 http://dx.doi.org/10.1186/1471-2105-12-256 |
work_keys_str_mv | AT zhuqian semanticinferenceusingchemogenomicsdatafordrugdiscovery AT sunyuyin semanticinferenceusingchemogenomicsdatafordrugdiscovery AT challasashikiran semanticinferenceusingchemogenomicsdatafordrugdiscovery AT dingying semanticinferenceusingchemogenomicsdatafordrugdiscovery AT lajinessmichaels semanticinferenceusingchemogenomicsdatafordrugdiscovery AT wilddavidj semanticinferenceusingchemogenomicsdatafordrugdiscovery |