Cargando…

Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis

BACKGROUND: Analysis of Cerebrospinal Fluid (CSF) samples holds great promise to diagnose neurological pathologies and gain insight into the molecular background of these pathologies. Proteomics and metabolomics methods provide invaluable information on the biomolecular content of CSF and thereby on...

Descripción completa

Detalles Bibliográficos
Autores principales: Blanchet, Lionel, Smolinska, Agnieszka, Attali, Amos, Stoop, Marcel P, Ampt, Kirsten AM, van Aken, Hans, Suidgeest, Ernst, Tuinstra, Tinka, Wijmenga, Sybren S, Luider, Theo, Buydens, Lutgarde MC
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225201/
https://www.ncbi.nlm.nih.gov/pubmed/21696593
http://dx.doi.org/10.1186/1471-2105-12-254
_version_ 1782217482786832384
author Blanchet, Lionel
Smolinska, Agnieszka
Attali, Amos
Stoop, Marcel P
Ampt, Kirsten AM
van Aken, Hans
Suidgeest, Ernst
Tuinstra, Tinka
Wijmenga, Sybren S
Luider, Theo
Buydens, Lutgarde MC
author_facet Blanchet, Lionel
Smolinska, Agnieszka
Attali, Amos
Stoop, Marcel P
Ampt, Kirsten AM
van Aken, Hans
Suidgeest, Ernst
Tuinstra, Tinka
Wijmenga, Sybren S
Luider, Theo
Buydens, Lutgarde MC
author_sort Blanchet, Lionel
collection PubMed
description BACKGROUND: Analysis of Cerebrospinal Fluid (CSF) samples holds great promise to diagnose neurological pathologies and gain insight into the molecular background of these pathologies. Proteomics and metabolomics methods provide invaluable information on the biomolecular content of CSF and thereby on the possible status of the central nervous system, including neurological pathologies. The combined information provides a more complete description of CSF content. Extracting the full combined information requires a combined analysis of different datasets i.e. fusion of the data. RESULTS: A novel fusion method is presented and applied to proteomics and metabolomics data from a pre-clinical model of multiple sclerosis: an Experimental Autoimmune Encephalomyelitis (EAE) model in rats. The method follows a mid-level fusion architecture. The relevant information is extracted per platform using extended canonical variates analysis. The results are subsequently merged in order to be analyzed jointly. We find that the combined proteome and metabolome data allow for the efficient and reliable discrimination between healthy, peripherally inflamed rats, and rats at the onset of the EAE. The predicted accuracy reaches 89% on a test set. The important variables (metabolites and proteins) in this model are known to be linked to EAE and/or multiple sclerosis. CONCLUSIONS: Fusion of proteomics and metabolomics data is possible. The main issues of high-dimensionality and missing values are overcome. The outcome leads to higher accuracy in prediction and more exhaustive description of the disease profile. The biological interpretation of the involved variables validates our fusion approach.
format Online
Article
Text
id pubmed-3225201
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32252012011-11-29 Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis Blanchet, Lionel Smolinska, Agnieszka Attali, Amos Stoop, Marcel P Ampt, Kirsten AM van Aken, Hans Suidgeest, Ernst Tuinstra, Tinka Wijmenga, Sybren S Luider, Theo Buydens, Lutgarde MC BMC Bioinformatics Methodology Article BACKGROUND: Analysis of Cerebrospinal Fluid (CSF) samples holds great promise to diagnose neurological pathologies and gain insight into the molecular background of these pathologies. Proteomics and metabolomics methods provide invaluable information on the biomolecular content of CSF and thereby on the possible status of the central nervous system, including neurological pathologies. The combined information provides a more complete description of CSF content. Extracting the full combined information requires a combined analysis of different datasets i.e. fusion of the data. RESULTS: A novel fusion method is presented and applied to proteomics and metabolomics data from a pre-clinical model of multiple sclerosis: an Experimental Autoimmune Encephalomyelitis (EAE) model in rats. The method follows a mid-level fusion architecture. The relevant information is extracted per platform using extended canonical variates analysis. The results are subsequently merged in order to be analyzed jointly. We find that the combined proteome and metabolome data allow for the efficient and reliable discrimination between healthy, peripherally inflamed rats, and rats at the onset of the EAE. The predicted accuracy reaches 89% on a test set. The important variables (metabolites and proteins) in this model are known to be linked to EAE and/or multiple sclerosis. CONCLUSIONS: Fusion of proteomics and metabolomics data is possible. The main issues of high-dimensionality and missing values are overcome. The outcome leads to higher accuracy in prediction and more exhaustive description of the disease profile. The biological interpretation of the involved variables validates our fusion approach. BioMed Central 2011-06-22 /pmc/articles/PMC3225201/ /pubmed/21696593 http://dx.doi.org/10.1186/1471-2105-12-254 Text en Copyright ©2011 Blanchet et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Blanchet, Lionel
Smolinska, Agnieszka
Attali, Amos
Stoop, Marcel P
Ampt, Kirsten AM
van Aken, Hans
Suidgeest, Ernst
Tuinstra, Tinka
Wijmenga, Sybren S
Luider, Theo
Buydens, Lutgarde MC
Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
title Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
title_full Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
title_fullStr Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
title_full_unstemmed Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
title_short Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
title_sort fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225201/
https://www.ncbi.nlm.nih.gov/pubmed/21696593
http://dx.doi.org/10.1186/1471-2105-12-254
work_keys_str_mv AT blanchetlionel fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT smolinskaagnieszka fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT attaliamos fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT stoopmarcelp fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT amptkirstenam fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT vanakenhans fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT suidgeesternst fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT tuinstratinka fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT wijmengasybrens fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT luidertheo fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis
AT buydenslutgardemc fusionofmetabolomicsandproteomicsdataforbiomarkersdiscoverycasestudyontheexperimentalautoimmuneencephalomyelitis