Cargando…
Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism
Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225625/ https://www.ncbi.nlm.nih.gov/pubmed/21614431 http://dx.doi.org/10.1007/s00415-011-6099-5 |
_version_ | 1782217524446756864 |
---|---|
author | van den Bogaard, Simon J. A. Dumas, Eve M. Teeuwisse, Wouter M. Kan, Hermien E. Webb, Andrew Roos, Raymund A. C. van der Grond, Jeroen |
author_facet | van den Bogaard, Simon J. A. Dumas, Eve M. Teeuwisse, Wouter M. Kan, Hermien E. Webb, Andrew Roos, Raymund A. C. van der Grond, Jeroen |
author_sort | van den Bogaard, Simon J. A. |
collection | PubMed |
description | Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes. |
format | Online Article Text |
id | pubmed-3225625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-32256252011-12-27 Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism van den Bogaard, Simon J. A. Dumas, Eve M. Teeuwisse, Wouter M. Kan, Hermien E. Webb, Andrew Roos, Raymund A. C. van der Grond, Jeroen J Neurol Original Communication Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes. Springer-Verlag 2011-05-26 2011 /pmc/articles/PMC3225625/ /pubmed/21614431 http://dx.doi.org/10.1007/s00415-011-6099-5 Text en © The Author(s) 2011 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Original Communication van den Bogaard, Simon J. A. Dumas, Eve M. Teeuwisse, Wouter M. Kan, Hermien E. Webb, Andrew Roos, Raymund A. C. van der Grond, Jeroen Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
title | Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
title_full | Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
title_fullStr | Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
title_full_unstemmed | Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
title_short | Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
title_sort | exploratory 7-tesla magnetic resonance spectroscopy in huntington’s disease provides in vivo evidence for impaired energy metabolism |
topic | Original Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225625/ https://www.ncbi.nlm.nih.gov/pubmed/21614431 http://dx.doi.org/10.1007/s00415-011-6099-5 |
work_keys_str_mv | AT vandenbogaardsimonja exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism AT dumasevem exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism AT teeuwissewouterm exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism AT kanhermiene exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism AT webbandrew exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism AT roosraymundac exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism AT vandergrondjeroen exploratory7teslamagneticresonancespectroscopyinhuntingtonsdiseaseprovidesinvivoevidenceforimpairedenergymetabolism |