Cargando…
Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats
ABSTRACT: Although both diabetes and hypertension are risk factors for cardiovascular disease, the role of hyperglycaemia per se in endothelial dysfunction is controversial. This study was designed to examine whether hyperglycaemia, or streptozotocin-induced diabetes, could aggravate endothelial dys...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Science Inc
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225671/ https://www.ncbi.nlm.nih.gov/pubmed/21930604 http://dx.doi.org/10.1113/jphysiol.2011.213686 |
_version_ | 1782217526260793344 |
---|---|
author | Zhong, Mei-Fang Shen, Wei-Li Wang, Jian Yang, Jie Yuan, Wen-Jun He, Jin Wu, Ping-Ping Wang, Yuan Zhang, Lan Higashino, Hideaki Chen, Hong |
author_facet | Zhong, Mei-Fang Shen, Wei-Li Wang, Jian Yang, Jie Yuan, Wen-Jun He, Jin Wu, Ping-Ping Wang, Yuan Zhang, Lan Higashino, Hideaki Chen, Hong |
author_sort | Zhong, Mei-Fang |
collection | PubMed |
description | ABSTRACT: Although both diabetes and hypertension are risk factors for cardiovascular disease, the role of hyperglycaemia per se in endothelial dysfunction is controversial. This study was designed to examine whether hyperglycaemia, or streptozotocin-induced diabetes, could aggravate endothelial dysfunction in stroke-prone spontaneously hypertensive rats (SHRSP). Hyperglycaemia was induced by streptozotocin in 2-month-old SHRSP and age-matched normotensive Wistar–Kyoto (WKY) rats. The aorta was isolated 8 weeks after induction of hyperglycaemia to record its function and to examine its morphology with transmission electron microscopy. Endothelial/inducible nitric oxide synthase (eNOS/iNOS) and inducible/constitutive haem oxygenase (HO-1/HO-2) levels were determined with Western blotting. Aortic endothelial function and production of reactive oxygen species and nitric oxide were assayed after incubation in vitro in hyperglycaemic, hyperosmolar solution. Streptozotocin-induced diabetes of 8 weeks duration did not result in endothelial dysfunction in normotensive WKY rats. In contrast, hyperglycaemic WKY rats showed significantly enhanced endothelium-dependent vasodilatation, which was abrogated by simultaneous blocking of NOS and HO. The enhanced vasodilatation was associated with elevation of vascular eNOS and HO-1. Significant endothelial dysfunction and massive macrophage–monocyte infiltration were found in SHRSP aorta (the ratio of the number of macrophages to endothelial cells in the intima, expressed as a percentage, was 20.9 ± 2.8% in SHRSP versus 1.9 ± 0.5% in WKY rats, P < 0.01), which was attenuated significantly in hyperglycaemic SHRSP (11.3 ± 1.6%, P < 0.01 versus SHRSP). Acute hyperglycaemia (10 min) aggravated endothelial dysfunction in SHRSP, with a marked increase in intracellular reactive oxygen species and NO production. Sustained in vitro incubation in hyperglycaemic/hyperosmolar conditions (addition of an extra 50 mmol L(−1) of glucose or mannitol to the usual buffer, to produce a final osmolarity of 350 mosmol L(−1)) for 5 h enhanced endothelium-dependent vasodilatation, with elevated vessel NO production and upregulation of eNOS/HO-1 proteins. Sustained hyperglycaemia does not aggravate endothelial dysfunction and macrophage infiltration in SHRSP. Hyperglycaemia/hyperosmolarity-induced upregulation of eNOS and HO-1 may play a role in this paradoxical adaptation of endothelial function. |
format | Online Article Text |
id | pubmed-3225671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Blackwell Science Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-32256712012-09-10 Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats Zhong, Mei-Fang Shen, Wei-Li Wang, Jian Yang, Jie Yuan, Wen-Jun He, Jin Wu, Ping-Ping Wang, Yuan Zhang, Lan Higashino, Hideaki Chen, Hong J Physiol Cardiovascular ABSTRACT: Although both diabetes and hypertension are risk factors for cardiovascular disease, the role of hyperglycaemia per se in endothelial dysfunction is controversial. This study was designed to examine whether hyperglycaemia, or streptozotocin-induced diabetes, could aggravate endothelial dysfunction in stroke-prone spontaneously hypertensive rats (SHRSP). Hyperglycaemia was induced by streptozotocin in 2-month-old SHRSP and age-matched normotensive Wistar–Kyoto (WKY) rats. The aorta was isolated 8 weeks after induction of hyperglycaemia to record its function and to examine its morphology with transmission electron microscopy. Endothelial/inducible nitric oxide synthase (eNOS/iNOS) and inducible/constitutive haem oxygenase (HO-1/HO-2) levels were determined with Western blotting. Aortic endothelial function and production of reactive oxygen species and nitric oxide were assayed after incubation in vitro in hyperglycaemic, hyperosmolar solution. Streptozotocin-induced diabetes of 8 weeks duration did not result in endothelial dysfunction in normotensive WKY rats. In contrast, hyperglycaemic WKY rats showed significantly enhanced endothelium-dependent vasodilatation, which was abrogated by simultaneous blocking of NOS and HO. The enhanced vasodilatation was associated with elevation of vascular eNOS and HO-1. Significant endothelial dysfunction and massive macrophage–monocyte infiltration were found in SHRSP aorta (the ratio of the number of macrophages to endothelial cells in the intima, expressed as a percentage, was 20.9 ± 2.8% in SHRSP versus 1.9 ± 0.5% in WKY rats, P < 0.01), which was attenuated significantly in hyperglycaemic SHRSP (11.3 ± 1.6%, P < 0.01 versus SHRSP). Acute hyperglycaemia (10 min) aggravated endothelial dysfunction in SHRSP, with a marked increase in intracellular reactive oxygen species and NO production. Sustained in vitro incubation in hyperglycaemic/hyperosmolar conditions (addition of an extra 50 mmol L(−1) of glucose or mannitol to the usual buffer, to produce a final osmolarity of 350 mosmol L(−1)) for 5 h enhanced endothelium-dependent vasodilatation, with elevated vessel NO production and upregulation of eNOS/HO-1 proteins. Sustained hyperglycaemia does not aggravate endothelial dysfunction and macrophage infiltration in SHRSP. Hyperglycaemia/hyperosmolarity-induced upregulation of eNOS and HO-1 may play a role in this paradoxical adaptation of endothelial function. Blackwell Science Inc 2011-11-01 2011-09-19 /pmc/articles/PMC3225671/ /pubmed/21930604 http://dx.doi.org/10.1113/jphysiol.2011.213686 Text en Journal compilation © 2011 The Physiological Society |
spellingShingle | Cardiovascular Zhong, Mei-Fang Shen, Wei-Li Wang, Jian Yang, Jie Yuan, Wen-Jun He, Jin Wu, Ping-Ping Wang, Yuan Zhang, Lan Higashino, Hideaki Chen, Hong Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
title | Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
title_full | Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
title_fullStr | Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
title_full_unstemmed | Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
title_short | Paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
title_sort | paradoxical effects of streptozotocin-induced diabetes on endothelial dysfunction in stroke-prone spontaneously hypertensive rats |
topic | Cardiovascular |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225671/ https://www.ncbi.nlm.nih.gov/pubmed/21930604 http://dx.doi.org/10.1113/jphysiol.2011.213686 |
work_keys_str_mv | AT zhongmeifang paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT shenweili paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT wangjian paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT yangjie paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT yuanwenjun paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT hejin paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT wupingping paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT wangyuan paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT zhanglan paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT higashinohideaki paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats AT chenhong paradoxicaleffectsofstreptozotocininduceddiabetesonendothelialdysfunctioninstrokepronespontaneouslyhypertensiverats |