Cargando…

Automatic identification of angiogenesis in double stained images of liver tissue

BACKGROUND: To grow beyond certain size and reach oxygen and other essential nutrients, solid tumors trigger angiogenesis (neovascularization) by secreting various growth factors. Based on this fact, several researches proposed that density of newly formed vessels correlate with tumor malignancy. Ve...

Descripción completa

Detalles Bibliográficos
Autores principales: Mete, Mutlu, Hennings, Leah, Spencer, Horace J, Topaloglu, Umit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226185/
https://www.ncbi.nlm.nih.gov/pubmed/19811678
http://dx.doi.org/10.1186/1471-2105-10-S11-S13
Descripción
Sumario:BACKGROUND: To grow beyond certain size and reach oxygen and other essential nutrients, solid tumors trigger angiogenesis (neovascularization) by secreting various growth factors. Based on this fact, several researches proposed that density of newly formed vessels correlate with tumor malignancy. Vessel density is known as a true prognostic indicator for several types of cancer. However, automated quantification of angiogenesis is still in its primitive stage, and deserves more intelligent methods by taking advantages accruing from novel computer algorithms. RESULTS: The newly introduced characteristics of subimages performed well in identification of region-of-angiogenesis. The proposed technique was tested on 522 samples collected from two high-resolution tissues. Having 0.90 overall f-measure, the results obtained with Support Vector Machines show significant agreement between automated framework and manual assessment of microvessels. CONCLUSION: This study introduces a new framework to identify angiogenesis to measure microvessel density (MVD) in digitalized images of liver cancer tissues. The objective is to recognize all subimages having new vessel formations. In addition to region based characteristics, a set of morphological features are proposed to differentiate positive and negative incidences.