Cargando…
Graph ranking for exploratory gene data analysis
BACKGROUND: Microarray technology has made it possible to simultaneously monitor the expression levels of thousands of genes in a single experiment. However, the large number of genes greatly increases the challenges of analyzing, comprehending and interpreting the resulting mass of data. Selecting...
Autores principales: | Gao, Cuilan, Dang, Xin, Chen, Yixin, Wilkins, Dawn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226190/ https://www.ncbi.nlm.nih.gov/pubmed/19811684 http://dx.doi.org/10.1186/1471-2105-10-S11-S19 |
Ejemplares similares
-
Robust clustering in high dimensional data using statistical depths
por: Ding, Yuanyuan, et al.
Publicado: (2007) -
Exploratory analysis of protein translation regulatory networks using hierarchical random graphs
por: Wu, Daniel D, et al.
Publicado: (2010) -
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
por: Ding, Yuanyuan, et al.
Publicado: (2006) -
Network tuned multiple rank aggregation and applications to gene ranking
por: Wang, Wenhui, et al.
Publicado: (2015) -
MINER: exploratory analysis of gene interaction networks by machine learning from expression data
por: Kadupitige, Sidath Randeni, et al.
Publicado: (2009)