Cargando…
Integrating phenotype and gene expression data for predicting gene function
BACKGROUND: This paper presents a framework for integrating disparate data sets to predict gene function. The algorithm constructs a graph, called an integrated similarity graph, by computing similarities based upon both gene expression and textual phenotype data. This integrated graph is then used...
Autores principales: | Malone, Brandon M, Perkins, Andy D, Bridges, Susan M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226192/ https://www.ncbi.nlm.nih.gov/pubmed/19811686 http://dx.doi.org/10.1186/1471-2105-10-S11-S20 |
Ejemplares similares
-
Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data
por: Berg, Bart HJ van den, et al.
Publicado: (2009) -
Threshold selection in gene co-expression networks using spectral graph theory techniques
por: Perkins, Andy D, et al.
Publicado: (2009) -
Functional data analysis for identifying nonlinear models of gene regulatory networks
por: Summer, Georg, et al.
Publicado: (2010) -
GOFFA: Gene Ontology For Functional Analysis – A FDA Gene Ontology Tool for Analysis of Genomic and Proteomic Data
por: Sun, Hongmei, et al.
Publicado: (2006) -
Integrating epigenetic, genetic, and phenotypic data to uncover gene-region associations with triglycerides in the GOLDN study
por: Romanescu, Razvan G., et al.
Publicado: (2018)