Cargando…

Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia mal...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhiru, Garner, Amanda L., Gloeckner, Christian, Janda, Kim D., Carlow, Clotilde K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226453/
https://www.ncbi.nlm.nih.gov/pubmed/22140592
http://dx.doi.org/10.1371/journal.pntd.0001411
Descripción
Sumario:The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286).