Cargando…

Chronic Oral Exposure to Bisphenol A Results in a Nonmonotonic Dose Response in Mammary Carcinogenesis and Metastasis in MMTV-erbB2 Mice

Background: Bisphenol A (BPA) is a synthetic compound used to produce plastics and epoxy resins. BPA can leach from these products in appreciable amounts, resulting in nearly ubiquitous daily exposure to humans. Whether BPA is harmful to humans, especially when administered orally in concentrations...

Descripción completa

Detalles Bibliográficos
Autores principales: Jenkins, Sarah, Wang, Jun, Eltoum, Isam, Desmond, Renee, Lamartiniere, Coral A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226508/
https://www.ncbi.nlm.nih.gov/pubmed/21988766
http://dx.doi.org/10.1289/ehp.1103850
Descripción
Sumario:Background: Bisphenol A (BPA) is a synthetic compound used to produce plastics and epoxy resins. BPA can leach from these products in appreciable amounts, resulting in nearly ubiquitous daily exposure to humans. Whether BPA is harmful to humans, especially when administered orally in concentrations relevant to humans, is a topic of debate. Objectives: In this study, we investigated the role of chronic oral exposure to BPA during adulthood on mammary carcinogenesis by using a transgenic mouse model that spontaneously develops tumors through overexpression of wild-type erbB2 [mouse mammary tumor virus (MMTV)-erbB2]. Methods: MMTV-erbB2 mice were exposed to 0, 2.5, 25, 250, or 2,500 µg BPA/L drinking water from 56 until 112 days of age (for mechanism of action) or 252 days of age (for tumorigenesis). Cellular and molecular mechanisms of BPA action in the mammary gland were investigated via immunohistochemistry and immunoblotting. Results: Only low doses of BPA significantly decreased tumor latency and increased tumor multiplicity, tumor burden, and the incidence of metastasis. All BPA doses significantly increased the cell proliferation index, but only the higher doses also increased the apoptotic index in the mammary gland. At the molecular level, 25 µg BPA/L, but not 2,500 µg BPA/L, increased phosphorylation of erbB2, erbB3, insulin-like growth factor 1 receptor, and Akt in the mammary gland. Discussion: Low, but not high, BPA doses significantly accelerated mammary tumorigenesis and metastasis in MMTV-erbB2 mice. The combined ratio of cell proliferation and apoptosis indices and alterations in protein expression best predicted the ability of each dose of BPA to alter tumorigenesis in this model.