Cargando…
Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells
There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226622/ https://www.ncbi.nlm.nih.gov/pubmed/22140478 http://dx.doi.org/10.1371/journal.pone.0027876 |
_version_ | 1782217655620468736 |
---|---|
author | Kastrati, Irida Edirisinghe, Praneeth D. Hemachandra, L-P-Madhubani P. Chandrasena, Esala R. Choi, Jaewoo Wang, Yue-Ting Bolton, Judy L. Thatcher, Gregory R. J. |
author_facet | Kastrati, Irida Edirisinghe, Praneeth D. Hemachandra, L-P-Madhubani P. Chandrasena, Esala R. Choi, Jaewoo Wang, Yue-Ting Bolton, Judy L. Thatcher, Gregory R. J. |
author_sort | Kastrati, Irida |
collection | PubMed |
description | There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention. |
format | Online Article Text |
id | pubmed-3226622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32266222011-12-02 Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells Kastrati, Irida Edirisinghe, Praneeth D. Hemachandra, L-P-Madhubani P. Chandrasena, Esala R. Choi, Jaewoo Wang, Yue-Ting Bolton, Judy L. Thatcher, Gregory R. J. PLoS One Research Article There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention. Public Library of Science 2011-11-29 /pmc/articles/PMC3226622/ /pubmed/22140478 http://dx.doi.org/10.1371/journal.pone.0027876 Text en Kastrati et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kastrati, Irida Edirisinghe, Praneeth D. Hemachandra, L-P-Madhubani P. Chandrasena, Esala R. Choi, Jaewoo Wang, Yue-Ting Bolton, Judy L. Thatcher, Gregory R. J. Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells |
title | Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells |
title_full | Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells |
title_fullStr | Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells |
title_full_unstemmed | Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells |
title_short | Raloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells |
title_sort | raloxifene and desmethylarzoxifene block estrogen-induced malignant transformation of human breast epithelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226622/ https://www.ncbi.nlm.nih.gov/pubmed/22140478 http://dx.doi.org/10.1371/journal.pone.0027876 |
work_keys_str_mv | AT kastratiirida raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT edirisinghepraneethd raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT hemachandralpmadhubanip raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT chandrasenaesalar raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT choijaewoo raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT wangyueting raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT boltonjudyl raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells AT thatchergregoryrj raloxifeneanddesmethylarzoxifeneblockestrogeninducedmalignanttransformationofhumanbreastepithelialcells |