Cargando…

Identification of gene fusion transcripts by transcriptome sequencing in BRCA1-mutated breast cancers and cell lines

BACKGROUND: Gene fusions arising from chromosomal translocations have been implicated in cancer. However, the role of gene fusions in BRCA1-related breast cancers is not well understood. Mutations in BRCA1 are associated with an increased risk for breast cancer (up to 80% lifetime risk) and ovarian...

Descripción completa

Detalles Bibliográficos
Autores principales: Ha, Kevin CH, Lalonde, Emilie, Li, Lili, Cavallone, Luca, Natrajan, Rachael, Lambros, Maryou B, Mitsopoulos, Costas, Hakas, Jarle, Kozarewa, Iwanka, Fenwick, Kerry, Lord, Chris J, Ashworth, Alan, Vincent-Salomon, Anne, Basik, Mark, Reis-Filho, Jorge S, Majewski, Jacek, Foulkes, William D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227591/
https://www.ncbi.nlm.nih.gov/pubmed/22032724
http://dx.doi.org/10.1186/1755-8794-4-75
Descripción
Sumario:BACKGROUND: Gene fusions arising from chromosomal translocations have been implicated in cancer. However, the role of gene fusions in BRCA1-related breast cancers is not well understood. Mutations in BRCA1 are associated with an increased risk for breast cancer (up to 80% lifetime risk) and ovarian cancer (up to 50%). We sought to identify putative gene fusions in the transcriptomes of these cancers using high-throughput RNA sequencing (RNA-Seq). METHODS: We used Illumina sequencing technology to sequence the transcriptomes of five BRCA1-mutated breast cancer cell lines, three BRCA1-mutated primary tumors, two secretory breast cancer primary tumors and one non-tumorigenic breast epithelial cell line. Using a bioinformatics approach, our initial attempt at discovering putative gene fusions relied on analyzing single-end reads and identifying reads that aligned across exons of two different genes. Subsequently, latter samples were sequenced with paired-end reads and at longer cycles (producing longer reads). We then refined our approach by identifying misaligned paired reads, which may flank a putative gene fusion junction. RESULTS: As a proof of concept, we were able to identify two previously characterized gene fusions in our samples using both single-end and paired-end approaches. In addition, we identified three novel in-frame fusions, but none were recurrent. Two of the candidates, WWC1-ADRBK2 in HCC3153 cell line and ADNP-C20orf132 in a primary tumor, were confirmed by Sanger sequencing and RT-PCR. RNA-Seq expression profiling of these two fusions showed a distinct overexpression of the 3' partner genes, suggesting that its expression may be under the control of the 5' partner gene's regulatory elements. CONCLUSIONS: In this study, we used both single-end and paired-end sequencing strategies to discover gene fusions in breast cancer transcriptomes with BRCA1 mutations. We found that the use of paired-end reads is an effective tool for transcriptome profiling of gene fusions. Our findings suggest that while gene fusions are present in some BRCA1-mutated breast cancers, they are infrequent and not recurrent. However, private fusions may still be valuable as potential patient-specific biomarkers for diagnosis and treatment.