Cargando…
Transition to absence seizures and the role of GABA(A) receptors
Absence seizures appear to be initiated in a putative cortical ‘initiation site’ by the expression of medium-amplitude 5–9 Hz oscillations, which may in part be due to a decreased phasic GABA(A) receptor function. These oscillations rapidly spread to other cortical areas and to the thalamus, leading...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publishers
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227737/ https://www.ncbi.nlm.nih.gov/pubmed/21889315 http://dx.doi.org/10.1016/j.eplepsyres.2011.07.011 |
_version_ | 1782217784694931456 |
---|---|
author | Crunelli, Vincenzo Cope, David W. Terry, John R. |
author_facet | Crunelli, Vincenzo Cope, David W. Terry, John R. |
author_sort | Crunelli, Vincenzo |
collection | PubMed |
description | Absence seizures appear to be initiated in a putative cortical ‘initiation site’ by the expression of medium-amplitude 5–9 Hz oscillations, which may in part be due to a decreased phasic GABA(A) receptor function. These oscillations rapidly spread to other cortical areas and to the thalamus, leading to fully developed generalized spike and wave discharges. In thalamocortical neurons of genetic models, phasic GABA(A) inhibition is either unchanged or increased, whereas tonic GABA(A) inhibition is increased both in genetic and pharmacological models. This enhanced tonic inhibition is required for absence seizure generation, and in genetic models it results from a malfunction in the astrocytic GABA transporter GAT-1. Contradictory results from inbred and transgenic animals still do not allow us to draw firm conclusions on changes in phasic GABA(A) inhibition in the GABAergic neurons of the nucleus reticularis thalami. Mathematical modelling may enhance our understanding of these competing hypotheses, by permitting investigations of their mechanistic aspects, hence enabling a greater understanding of the processes underlying seizure generation and evolution. |
format | Online Article Text |
id | pubmed-3227737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Elsevier Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-32277372011-12-01 Transition to absence seizures and the role of GABA(A) receptors Crunelli, Vincenzo Cope, David W. Terry, John R. Epilepsy Res Article Absence seizures appear to be initiated in a putative cortical ‘initiation site’ by the expression of medium-amplitude 5–9 Hz oscillations, which may in part be due to a decreased phasic GABA(A) receptor function. These oscillations rapidly spread to other cortical areas and to the thalamus, leading to fully developed generalized spike and wave discharges. In thalamocortical neurons of genetic models, phasic GABA(A) inhibition is either unchanged or increased, whereas tonic GABA(A) inhibition is increased both in genetic and pharmacological models. This enhanced tonic inhibition is required for absence seizure generation, and in genetic models it results from a malfunction in the astrocytic GABA transporter GAT-1. Contradictory results from inbred and transgenic animals still do not allow us to draw firm conclusions on changes in phasic GABA(A) inhibition in the GABAergic neurons of the nucleus reticularis thalami. Mathematical modelling may enhance our understanding of these competing hypotheses, by permitting investigations of their mechanistic aspects, hence enabling a greater understanding of the processes underlying seizure generation and evolution. Elsevier Science Publishers 2011-12 /pmc/articles/PMC3227737/ /pubmed/21889315 http://dx.doi.org/10.1016/j.eplepsyres.2011.07.011 Text en © 2011 Elsevier B.V. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Crunelli, Vincenzo Cope, David W. Terry, John R. Transition to absence seizures and the role of GABA(A) receptors |
title | Transition to absence seizures and the role of GABA(A) receptors |
title_full | Transition to absence seizures and the role of GABA(A) receptors |
title_fullStr | Transition to absence seizures and the role of GABA(A) receptors |
title_full_unstemmed | Transition to absence seizures and the role of GABA(A) receptors |
title_short | Transition to absence seizures and the role of GABA(A) receptors |
title_sort | transition to absence seizures and the role of gaba(a) receptors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227737/ https://www.ncbi.nlm.nih.gov/pubmed/21889315 http://dx.doi.org/10.1016/j.eplepsyres.2011.07.011 |
work_keys_str_mv | AT crunellivincenzo transitiontoabsenceseizuresandtheroleofgabaareceptors AT copedavidw transitiontoabsenceseizuresandtheroleofgabaareceptors AT terryjohnr transitiontoabsenceseizuresandtheroleofgabaareceptors |