Cargando…
Rapid empirical discovery of optimal peptides for targeted proteomics
We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro-synthesized proteins. We demonstrate the approach using human transcription factors – which are typically difficult, low-ab...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227787/ https://www.ncbi.nlm.nih.gov/pubmed/22056677 http://dx.doi.org/10.1038/nmeth.1770 |
_version_ | 1782217785375457280 |
---|---|
author | Stergachis, Andrew B. MacLean, Brendan Lee, Kristen Stamatoyannopoulos, John A. MacCoss, Michael J. |
author_facet | Stergachis, Andrew B. MacLean, Brendan Lee, Kristen Stamatoyannopoulos, John A. MacCoss, Michael J. |
author_sort | Stergachis, Andrew B. |
collection | PubMed |
description | We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro-synthesized proteins. We demonstrate the approach using human transcription factors – which are typically difficult, low-abundance – targets with an overall success rate of 98%. We show further that targeted proteomic assays developed using our approach facilitate robust in vivo quantification of human transcription factors. |
format | Online Article Text |
id | pubmed-3227787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
record_format | MEDLINE/PubMed |
spelling | pubmed-32277872012-06-01 Rapid empirical discovery of optimal peptides for targeted proteomics Stergachis, Andrew B. MacLean, Brendan Lee, Kristen Stamatoyannopoulos, John A. MacCoss, Michael J. Nat Methods Article We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro-synthesized proteins. We demonstrate the approach using human transcription factors – which are typically difficult, low-abundance – targets with an overall success rate of 98%. We show further that targeted proteomic assays developed using our approach facilitate robust in vivo quantification of human transcription factors. 2011-11-06 /pmc/articles/PMC3227787/ /pubmed/22056677 http://dx.doi.org/10.1038/nmeth.1770 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Stergachis, Andrew B. MacLean, Brendan Lee, Kristen Stamatoyannopoulos, John A. MacCoss, Michael J. Rapid empirical discovery of optimal peptides for targeted proteomics |
title | Rapid empirical discovery of optimal peptides for targeted proteomics |
title_full | Rapid empirical discovery of optimal peptides for targeted proteomics |
title_fullStr | Rapid empirical discovery of optimal peptides for targeted proteomics |
title_full_unstemmed | Rapid empirical discovery of optimal peptides for targeted proteomics |
title_short | Rapid empirical discovery of optimal peptides for targeted proteomics |
title_sort | rapid empirical discovery of optimal peptides for targeted proteomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227787/ https://www.ncbi.nlm.nih.gov/pubmed/22056677 http://dx.doi.org/10.1038/nmeth.1770 |
work_keys_str_mv | AT stergachisandrewb rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics AT macleanbrendan rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics AT leekristen rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics AT stamatoyannopoulosjohna rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics AT maccossmichaelj rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics |