Cargando…

Rapid empirical discovery of optimal peptides for targeted proteomics

We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro-synthesized proteins. We demonstrate the approach using human transcription factors – which are typically difficult, low-ab...

Descripción completa

Detalles Bibliográficos
Autores principales: Stergachis, Andrew B., MacLean, Brendan, Lee, Kristen, Stamatoyannopoulos, John A., MacCoss, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227787/
https://www.ncbi.nlm.nih.gov/pubmed/22056677
http://dx.doi.org/10.1038/nmeth.1770
_version_ 1782217785375457280
author Stergachis, Andrew B.
MacLean, Brendan
Lee, Kristen
Stamatoyannopoulos, John A.
MacCoss, Michael J.
author_facet Stergachis, Andrew B.
MacLean, Brendan
Lee, Kristen
Stamatoyannopoulos, John A.
MacCoss, Michael J.
author_sort Stergachis, Andrew B.
collection PubMed
description We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro-synthesized proteins. We demonstrate the approach using human transcription factors – which are typically difficult, low-abundance – targets with an overall success rate of 98%. We show further that targeted proteomic assays developed using our approach facilitate robust in vivo quantification of human transcription factors.
format Online
Article
Text
id pubmed-3227787
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-32277872012-06-01 Rapid empirical discovery of optimal peptides for targeted proteomics Stergachis, Andrew B. MacLean, Brendan Lee, Kristen Stamatoyannopoulos, John A. MacCoss, Michael J. Nat Methods Article We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro-synthesized proteins. We demonstrate the approach using human transcription factors – which are typically difficult, low-abundance – targets with an overall success rate of 98%. We show further that targeted proteomic assays developed using our approach facilitate robust in vivo quantification of human transcription factors. 2011-11-06 /pmc/articles/PMC3227787/ /pubmed/22056677 http://dx.doi.org/10.1038/nmeth.1770 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Stergachis, Andrew B.
MacLean, Brendan
Lee, Kristen
Stamatoyannopoulos, John A.
MacCoss, Michael J.
Rapid empirical discovery of optimal peptides for targeted proteomics
title Rapid empirical discovery of optimal peptides for targeted proteomics
title_full Rapid empirical discovery of optimal peptides for targeted proteomics
title_fullStr Rapid empirical discovery of optimal peptides for targeted proteomics
title_full_unstemmed Rapid empirical discovery of optimal peptides for targeted proteomics
title_short Rapid empirical discovery of optimal peptides for targeted proteomics
title_sort rapid empirical discovery of optimal peptides for targeted proteomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227787/
https://www.ncbi.nlm.nih.gov/pubmed/22056677
http://dx.doi.org/10.1038/nmeth.1770
work_keys_str_mv AT stergachisandrewb rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics
AT macleanbrendan rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics
AT leekristen rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics
AT stamatoyannopoulosjohna rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics
AT maccossmichaelj rapidempiricaldiscoveryofoptimalpeptidesfortargetedproteomics