Cargando…

(18)F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation

PURPOSE: Between 30 and 50% of febrile neutropenic episodes are accounted for by infection. C-reactive protein (CRP) is a nonspecific parameter for infection and inflammation but might be employed as a trigger for diagnosis. The aim of the study was to evaluate whether (18)F-fluorodeoxyglucose (FDG)...

Descripción completa

Detalles Bibliográficos
Autores principales: Vos, Fidel J., Donnelly, J. Peter, Oyen, Wim J. G., Kullberg, Bart-Jan, Bleeker-Rovers, Chantal P., Blijlevens, Nicole M. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227801/
https://www.ncbi.nlm.nih.gov/pubmed/21947022
http://dx.doi.org/10.1007/s00259-011-1939-1
Descripción
Sumario:PURPOSE: Between 30 and 50% of febrile neutropenic episodes are accounted for by infection. C-reactive protein (CRP) is a nonspecific parameter for infection and inflammation but might be employed as a trigger for diagnosis. The aim of the study was to evaluate whether (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT can be used to detect inflammatory foci in neutropenic patients with elevated CRP and whether it helps to direct treatment. METHODS: Twenty-eight consecutive patients with neutropenia as a result of intensive chemotherapy for haematological malignancies or myeloablative therapy for haematopoietic stem cell transplantation were prospectively included. (18)F-FDG PET/CT was added to the regular diagnostic workup once the CRP level rose above 50 mg/l. RESULTS: Pathological FDG uptake was found in 26 of 28 cases despite peripheral neutrophil counts less than 0.1 × 10(−9)/l in 26 patients: in the digestive tract in 18 cases, around the tract of the central venous catheter (CVC) in 9 and in the lungs in 7 cases. FDG uptake in the CVC tract was associated with coagulase-negative staphylococcal bacteraemia (p < 0.001) and deep venous thrombosis (p = 0.002). The number of patients having Streptococcus mitis bacteraemia appeared to be higher in patients with grade 3 oesophageal FDG uptake (p = 0.08). Pulmonary FDG uptake was associated with the presence of invasive fungal disease (p = 0.04). CONCLUSION: (18)F-FDG PET/CT scanning during chemotherapy-induced febrile neutropenia and increased CRP is able to detect localized foci of infection and inflammation despite the absence of circulating neutrophils. Besides its potential role in detecting CVC-related infection during febrile neutropenia, the high negative predictive value of (18)F-FDG PET/CT is important for avoiding unnecessary diagnostic tests and therapy.