Cargando…
Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets
BACKGROUND: Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb), affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to th...
Autores principales: | Periwal, Vinita, Rajappan, Jinuraj K, Jaleel, Abdul UC, Scaria, Vinod |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228709/ https://www.ncbi.nlm.nih.gov/pubmed/22099929 http://dx.doi.org/10.1186/1756-0500-4-504 |
Ejemplares similares
-
Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets
por: Periwal, Vinita, et al.
Publicado: (2012) -
Predictive modeling of anti-malarial molecules inhibiting apicoplast formation
por: Jamal, Salma, et al.
Publicado: (2013) -
Computational analysis and predictive modeling of small molecule modulators of microRNA
por: Jamal, Salma, et al.
Publicado: (2012) -
Phytochemical screening of five medicinal legumes and their evaluation for in vitro anti-tubercular activity
por: Kumar, J. Komal, et al.
Publicado: (2014) -
AntiTbPdb: a knowledgebase of anti-tubercular peptides
por: Usmani, Salman Sadullah, et al.
Publicado: (2018)