Cargando…
POPISK: T-cell reactivity prediction using support vector machines and string kernels
BACKGROUND: Accurate prediction of peptide immunogenicity and characterization of relation between peptide sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the immune system. In contrast to the prediction of antigen processing and presentation pat...
Autores principales: | Tung, Chun-Wei, Ziehm, Matthias, Kämper, Andreas, Kohlbacher, Oliver, Ho, Shinn-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228774/ https://www.ncbi.nlm.nih.gov/pubmed/22085524 http://dx.doi.org/10.1186/1471-2105-12-446 |
Ejemplares similares
-
Identification of MicroRNA Precursors with Support Vector Machine and String Kernel
por: Xu, Jian-Hua, et al.
Publicado: (2008) -
Exploiting physico-chemical properties in string kernels
por: Toussaint, Nora C, et al.
Publicado: (2010) -
Regularization, optimization, kernels, and support vector machines
por: Suykens, Johan A K, et al.
Publicado: (2015) -
Support Vector Machines and Kernels for Computational Biology
por: Ben-Hur, Asa, et al.
Publicado: (2008) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017)