Cargando…

Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain

BACKGROUND: Common genetic variants that regulate gene expression are widely suspected to contribute to the etiology and phenotypic variability of complex diseases. Although high-throughput, microarray-based assays have been developed to measure differences in mRNA expression among independent sampl...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiang, Wang, Hao, Zhu, Min, Sun, Yue, Tao, Yu, He, Qin, Wang, Jian, Chen, Li, Saffen, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228908/
https://www.ncbi.nlm.nih.gov/pubmed/22013986
http://dx.doi.org/10.1186/1471-2164-12-518
_version_ 1782217886113202176
author Xu, Xiang
Wang, Hao
Zhu, Min
Sun, Yue
Tao, Yu
He, Qin
Wang, Jian
Chen, Li
Saffen, David
author_facet Xu, Xiang
Wang, Hao
Zhu, Min
Sun, Yue
Tao, Yu
He, Qin
Wang, Jian
Chen, Li
Saffen, David
author_sort Xu, Xiang
collection PubMed
description BACKGROUND: Common genetic variants that regulate gene expression are widely suspected to contribute to the etiology and phenotypic variability of complex diseases. Although high-throughput, microarray-based assays have been developed to measure differences in mRNA expression among independent samples, these assays often lack the sensitivity to detect rare mRNAs and the reproducibility to quantify small changes in mRNA expression. By contrast, PCR-based allelic expression imbalance (AEI) assays, which use a "marker" single nucleotide polymorphism (mSNP) in the mRNA to distinguish expression from pairs of genetic alleles in individual samples, have high sensitivity and accuracy, allowing differences in mRNA expression greater than 1.2-fold to be quantified with high reproducibility. In this paper, we describe the use of an efficient PCR/next-generation DNA sequencing-based assay to analyze allele-specific differences in mRNA expression for candidate neuropsychiatric disorder genes in human brain. RESULTS: Using our assay, we successfully analyzed AEI for 70 candidate neuropsychiatric disorder genes in 52 independent human brain samples. Among these genes, 62/70 (89%) showed AEI ratios greater than 1 ± 0.2 in at least one sample and 8/70 (11%) showed no AEI. Arranging log(2)AEI ratios in increasing order from negative-to-positive values revealed highly reproducible distributions of log(2)AEI ratios that are distinct for each gene/marker SNP combination. Mathematical modeling suggests that these log(2)AEI distributions can provide important clues concerning the number, location and contributions of cis-acting regulatory variants to mRNA expression. CONCLUSIONS: We have developed a highly sensitive and reproducible method for quantifying AEI of mRNA expressed in human brain. Importantly, this assay allowed quantification of differential mRNA expression for many candidate disease genes entirely missed in previously published microarray-based studies of mRNA expression in human brain. Given the ability of next-generation sequencing technology to generate large numbers of independent sequencing reads, our method should be suitable for analyzing from 100- to 200-candidate genes in 100 samples in a single experiment. We believe that this is the appropriate scale for investigating variation in mRNA expression for defined sets candidate disorder genes, allowing, for example, comprehensive coverage of genes that function within biological pathways implicated in specific disorders. The combination of AEI measurements and mathematical modeling described in this study can assist in identifying SNPs that correlate with mRNA expression. Alleles of these SNPs (individually or as sets) that accurately predict high- or low-mRNA expression should be useful as markers in genetic association studies aimed at linking candidate genes to specific neuropsychiatric disorders.
format Online
Article
Text
id pubmed-3228908
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32289082011-12-03 Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain Xu, Xiang Wang, Hao Zhu, Min Sun, Yue Tao, Yu He, Qin Wang, Jian Chen, Li Saffen, David BMC Genomics Methodology Article BACKGROUND: Common genetic variants that regulate gene expression are widely suspected to contribute to the etiology and phenotypic variability of complex diseases. Although high-throughput, microarray-based assays have been developed to measure differences in mRNA expression among independent samples, these assays often lack the sensitivity to detect rare mRNAs and the reproducibility to quantify small changes in mRNA expression. By contrast, PCR-based allelic expression imbalance (AEI) assays, which use a "marker" single nucleotide polymorphism (mSNP) in the mRNA to distinguish expression from pairs of genetic alleles in individual samples, have high sensitivity and accuracy, allowing differences in mRNA expression greater than 1.2-fold to be quantified with high reproducibility. In this paper, we describe the use of an efficient PCR/next-generation DNA sequencing-based assay to analyze allele-specific differences in mRNA expression for candidate neuropsychiatric disorder genes in human brain. RESULTS: Using our assay, we successfully analyzed AEI for 70 candidate neuropsychiatric disorder genes in 52 independent human brain samples. Among these genes, 62/70 (89%) showed AEI ratios greater than 1 ± 0.2 in at least one sample and 8/70 (11%) showed no AEI. Arranging log(2)AEI ratios in increasing order from negative-to-positive values revealed highly reproducible distributions of log(2)AEI ratios that are distinct for each gene/marker SNP combination. Mathematical modeling suggests that these log(2)AEI distributions can provide important clues concerning the number, location and contributions of cis-acting regulatory variants to mRNA expression. CONCLUSIONS: We have developed a highly sensitive and reproducible method for quantifying AEI of mRNA expressed in human brain. Importantly, this assay allowed quantification of differential mRNA expression for many candidate disease genes entirely missed in previously published microarray-based studies of mRNA expression in human brain. Given the ability of next-generation sequencing technology to generate large numbers of independent sequencing reads, our method should be suitable for analyzing from 100- to 200-candidate genes in 100 samples in a single experiment. We believe that this is the appropriate scale for investigating variation in mRNA expression for defined sets candidate disorder genes, allowing, for example, comprehensive coverage of genes that function within biological pathways implicated in specific disorders. The combination of AEI measurements and mathematical modeling described in this study can assist in identifying SNPs that correlate with mRNA expression. Alleles of these SNPs (individually or as sets) that accurately predict high- or low-mRNA expression should be useful as markers in genetic association studies aimed at linking candidate genes to specific neuropsychiatric disorders. BioMed Central 2011-10-20 /pmc/articles/PMC3228908/ /pubmed/22013986 http://dx.doi.org/10.1186/1471-2164-12-518 Text en Copyright ©2011 Xu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Xu, Xiang
Wang, Hao
Zhu, Min
Sun, Yue
Tao, Yu
He, Qin
Wang, Jian
Chen, Li
Saffen, David
Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain
title Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain
title_full Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain
title_fullStr Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain
title_full_unstemmed Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain
title_short Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain
title_sort next-generation dna sequencing-based assay for measuring allelic expression imbalance (aei) of candidate neuropsychiatric disorder genes in human brain
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228908/
https://www.ncbi.nlm.nih.gov/pubmed/22013986
http://dx.doi.org/10.1186/1471-2164-12-518
work_keys_str_mv AT xuxiang nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT wanghao nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT zhumin nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT sunyue nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT taoyu nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT heqin nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT wangjian nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT chenli nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain
AT saffendavid nextgenerationdnasequencingbasedassayformeasuringallelicexpressionimbalanceaeiofcandidateneuropsychiatricdisordergenesinhumanbrain