Cargando…
Classification of microarrays; synergistic effects between normalization, gene selection and machine learning
BACKGROUND: Machine learning is a powerful approach for describing and predicting classes in microarray data. Although several comparative studies have investigated the relative performance of various machine learning methods, these often do not account for the fact that performance (e.g. error rate...
Autores principales: | Önskog, Jenny, Freyhult, Eva, Landfors, Mattias, Rydén, Patrik, Hvidsten, Torgeir R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229535/ https://www.ncbi.nlm.nih.gov/pubmed/21982277 http://dx.doi.org/10.1186/1471-2105-12-390 |
Ejemplares similares
-
Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering
por: Freyhult, Eva, et al.
Publicado: (2010) -
Evaluation of microarray data normalization procedures using spike-in experiments
por: Rydén, Patrik, et al.
Publicado: (2006) -
Normalization of High Dimensional Genomics Data Where the Distribution of the Altered Variables Is Skewed
por: Landfors, Mattias, et al.
Publicado: (2011) -
Pr is a member of a restricted class of σ(70)-dependent promoters that lack a recognizable −10 element
por: del Peso-Santos, Teresa, et al.
Publicado: (2012) -
Populus tremula (European aspen) shows no evidence of sexual dimorphism
por: Robinson, Kathryn M, et al.
Publicado: (2014)