Cargando…

Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery

BACKGROUND: One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Stothard, Paul, Choi, Jung-Woo, Basu, Urmila, Sumner-Thomson, Jennifer M, Meng, Yan, Liao, Xiaoping, Moore, Stephen S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229636/
https://www.ncbi.nlm.nih.gov/pubmed/22085807
http://dx.doi.org/10.1186/1471-2164-12-559
_version_ 1782217978529447936
author Stothard, Paul
Choi, Jung-Woo
Basu, Urmila
Sumner-Thomson, Jennifer M
Meng, Yan
Liao, Xiaoping
Moore, Stephen S
author_facet Stothard, Paul
Choi, Jung-Woo
Basu, Urmila
Sumner-Thomson, Jennifer M
Meng, Yan
Liao, Xiaoping
Moore, Stephen S
author_sort Stothard, Paul
collection PubMed
description BACKGROUND: One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle. RESULTS: The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs), 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel) between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs). Ten randomly selected CNVs, five genic and five non-genic, were successfully validated using quantitative real-time PCR. The CNVs are enriched for immune system genes and include genes that may contribute to lactation capacity. The majority of the CNVs (69%) were detected as regions with higher abundance in the Holstein bull. CONCLUSIONS: Substantial genetic differences exist between the Black Angus and Holstein animals sequenced in this work and the Hereford reference sequence, and some of this variation is predicted to affect evolutionarily conserved amino acids or gene copy number. The deeply annotated SNPs and CNVs identified in this resequencing study can serve as useful genetic tools, and as candidates in searches for phenotype-altering DNA differences.
format Online
Article
Text
id pubmed-3229636
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32296362011-12-12 Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery Stothard, Paul Choi, Jung-Woo Basu, Urmila Sumner-Thomson, Jennifer M Meng, Yan Liao, Xiaoping Moore, Stephen S BMC Genomics Research Article BACKGROUND: One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle. RESULTS: The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs), 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel) between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs). Ten randomly selected CNVs, five genic and five non-genic, were successfully validated using quantitative real-time PCR. The CNVs are enriched for immune system genes and include genes that may contribute to lactation capacity. The majority of the CNVs (69%) were detected as regions with higher abundance in the Holstein bull. CONCLUSIONS: Substantial genetic differences exist between the Black Angus and Holstein animals sequenced in this work and the Hereford reference sequence, and some of this variation is predicted to affect evolutionarily conserved amino acids or gene copy number. The deeply annotated SNPs and CNVs identified in this resequencing study can serve as useful genetic tools, and as candidates in searches for phenotype-altering DNA differences. BioMed Central 2011-11-15 /pmc/articles/PMC3229636/ /pubmed/22085807 http://dx.doi.org/10.1186/1471-2164-12-559 Text en Copyright ©2011 Stothard et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Stothard, Paul
Choi, Jung-Woo
Basu, Urmila
Sumner-Thomson, Jennifer M
Meng, Yan
Liao, Xiaoping
Moore, Stephen S
Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery
title Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery
title_full Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery
title_fullStr Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery
title_full_unstemmed Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery
title_short Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery
title_sort whole genome resequencing of black angus and holstein cattle for snp and cnv discovery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229636/
https://www.ncbi.nlm.nih.gov/pubmed/22085807
http://dx.doi.org/10.1186/1471-2164-12-559
work_keys_str_mv AT stothardpaul wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery
AT choijungwoo wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery
AT basuurmila wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery
AT sumnerthomsonjenniferm wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery
AT mengyan wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery
AT liaoxiaoping wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery
AT moorestephens wholegenomeresequencingofblackangusandholsteincattleforsnpandcnvdiscovery