Cargando…

A minimally invasive technique for percutaneous lumbar facet augmentation: Technical description of a novel device

BACKGROUND: We describe a new posterior dynamic stabilizing system that can be used to augment the mechanics of the degenerating lumbar segment. The mechanism of this system differs from other previously described surgical techniques that have been designed to augment lumbar biomechanics. The implan...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Zachary A., Armin, Sean, Raphael, Dan, Khoo, Larry T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229771/
https://www.ncbi.nlm.nih.gov/pubmed/22145084
http://dx.doi.org/10.4103/2152-7806.90026
Descripción
Sumario:BACKGROUND: We describe a new posterior dynamic stabilizing system that can be used to augment the mechanics of the degenerating lumbar segment. The mechanism of this system differs from other previously described surgical techniques that have been designed to augment lumbar biomechanics. The implant and technique we describe is an extension-limiting one, and it is designed to support and cushion the facet complex. Furthermore, it is inserted through an entirely percutaneous technique. The purpose of this technical note is to demonstrate a novel posterior surgical approach for the treatment of lumbar degenerative. METHODS: This report describes a novel, percutaneously placed, posterior dynamic stabilization system as an alternative option to treat lumbar degenerative disk disease with and without lumbar spinal stenosis. The system does not require a midline soft-tissue dissection, nor subperiosteal dissection, and is a truly minimally invasive means for posterior augmentation of the functional facet complex. This system can be implanted as a stand-alone procedure or in conjunction with decompression procedures. RESULTS: One-year clinical results in nine individual patients, all treated for degenerative disease of the lower lumbar spine, are presented. CONCLUSIONS: This novel technique allows for percutaneous posterior dynamic stabilization of the lumbar facet complex. The use of this procedure may allow a less invasive alternative to traditional approaches to the lumbar spine as well as an alternative to other newly developed posterior dynamic stabilization systems.