Cargando…

Unexpectedly Low Mutation Rates in Beta-Myosin Heavy Chain and Cardiac Myosin Binding Protein Genes in Italian Patients With Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere-related genes have been implicated in HCM etiology, those encoding β-myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Roncarati, Roberta, Latronico, Michael VG, Musumeci, Beatrice, Aurino, Stefania, Torella, Annalaura, Bang, Marie-Louise, Jotti, Gloria Saccani, Puca, Annibale A, Volpe, Massimo, Nigro, Vincenzo, Autore, Camillo, Condorelli, Gianluigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Subscription Services, Inc., A Wiley Company 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229838/
https://www.ncbi.nlm.nih.gov/pubmed/21302287
http://dx.doi.org/10.1002/jcp.22636
Descripción
Sumario:Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere-related genes have been implicated in HCM etiology, those encoding β-myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high-performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley-Liss, Inc.