Cargando…

Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice

Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs h...

Descripción completa

Detalles Bibliográficos
Autores principales: Siniscalco, Dario, Giordano, Catia, Galderisi, Umberto, Luongo, Livio, de Novellis, Vito, Rossi, Francesco, Maione, Sabatino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230031/
https://www.ncbi.nlm.nih.gov/pubmed/22164136
http://dx.doi.org/10.3389/fnint.2011.00079
_version_ 1782218026503897088
author Siniscalco, Dario
Giordano, Catia
Galderisi, Umberto
Luongo, Livio
de Novellis, Vito
Rossi, Francesco
Maione, Sabatino
author_facet Siniscalco, Dario
Giordano, Catia
Galderisi, Umberto
Luongo, Livio
de Novellis, Vito
Rossi, Francesco
Maione, Sabatino
author_sort Siniscalco, Dario
collection PubMed
description Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. Methods: Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. Results: hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. Conclusion: As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine.
format Online
Article
Text
id pubmed-3230031
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-32300312011-12-07 Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice Siniscalco, Dario Giordano, Catia Galderisi, Umberto Luongo, Livio de Novellis, Vito Rossi, Francesco Maione, Sabatino Front Integr Neurosci Neuroscience Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. Methods: Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. Results: hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. Conclusion: As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine. Frontiers Research Foundation 2011-12-01 /pmc/articles/PMC3230031/ /pubmed/22164136 http://dx.doi.org/10.3389/fnint.2011.00079 Text en Copyright © 2011 Siniscalco, Giordano, Galderisi, Luongo, de Novellis, Rossi and Maione. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
spellingShingle Neuroscience
Siniscalco, Dario
Giordano, Catia
Galderisi, Umberto
Luongo, Livio
de Novellis, Vito
Rossi, Francesco
Maione, Sabatino
Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice
title Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice
title_full Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice
title_fullStr Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice
title_full_unstemmed Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice
title_short Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice
title_sort long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230031/
https://www.ncbi.nlm.nih.gov/pubmed/22164136
http://dx.doi.org/10.3389/fnint.2011.00079
work_keys_str_mv AT siniscalcodario longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice
AT giordanocatia longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice
AT galderisiumberto longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice
AT luongolivio longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice
AT denovellisvito longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice
AT rossifrancesco longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice
AT maionesabatino longlastingeffectsofhumanmesenchymalstemcellsystemicadministrationonpainlikebehaviorscellularandbiomolecularmodificationsinneuropathicmice