Cargando…
A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on function...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science [etc.]
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230277/ https://www.ncbi.nlm.nih.gov/pubmed/22158824 http://dx.doi.org/10.1016/j.matpur.2011.07.006 |
_version_ | 1782218047491145728 |
---|---|
author | Dias, Nuno Costa de Gosson, Maurice Luef, Franz Prata, João Nuno |
author_facet | Dias, Nuno Costa de Gosson, Maurice Luef, Franz Prata, João Nuno |
author_sort | Dias, Nuno Costa |
collection | PubMed |
description | The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on [Formula: see text] but rather on [Formula: see text]. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of [Formula: see text] indexed by [Formula: see text]. This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces. |
format | Online Article Text |
id | pubmed-3230277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Elsevier Science [etc.] |
record_format | MEDLINE/PubMed |
spelling | pubmed-32302772011-12-05 A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces Dias, Nuno Costa de Gosson, Maurice Luef, Franz Prata, João Nuno J Math Pures Appl Article The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on [Formula: see text] but rather on [Formula: see text]. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of [Formula: see text] indexed by [Formula: see text]. This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces. Elsevier Science [etc.] 2011-11 /pmc/articles/PMC3230277/ /pubmed/22158824 http://dx.doi.org/10.1016/j.matpur.2011.07.006 Text en © 2011 Elsevier Masson SAS. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Dias, Nuno Costa de Gosson, Maurice Luef, Franz Prata, João Nuno A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces |
title | A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces |
title_full | A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces |
title_fullStr | A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces |
title_full_unstemmed | A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces |
title_short | A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces |
title_sort | pseudo-differential calculus on non-standard symplectic space; spectral and regularity results in modulation spaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230277/ https://www.ncbi.nlm.nih.gov/pubmed/22158824 http://dx.doi.org/10.1016/j.matpur.2011.07.006 |
work_keys_str_mv | AT diasnunocosta apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT degossonmaurice apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT lueffranz apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT pratajoaonuno apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT diasnunocosta pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT degossonmaurice pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT lueffranz pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces AT pratajoaonuno pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces |