Cargando…

A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces

The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on function...

Descripción completa

Detalles Bibliográficos
Autores principales: Dias, Nuno Costa, de Gosson, Maurice, Luef, Franz, Prata, João Nuno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science [etc.] 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230277/
https://www.ncbi.nlm.nih.gov/pubmed/22158824
http://dx.doi.org/10.1016/j.matpur.2011.07.006
_version_ 1782218047491145728
author Dias, Nuno Costa
de Gosson, Maurice
Luef, Franz
Prata, João Nuno
author_facet Dias, Nuno Costa
de Gosson, Maurice
Luef, Franz
Prata, João Nuno
author_sort Dias, Nuno Costa
collection PubMed
description The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on [Formula: see text] but rather on [Formula: see text]. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of [Formula: see text] indexed by [Formula: see text]. This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces.
format Online
Article
Text
id pubmed-3230277
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Elsevier Science [etc.]
record_format MEDLINE/PubMed
spelling pubmed-32302772011-12-05 A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces Dias, Nuno Costa de Gosson, Maurice Luef, Franz Prata, João Nuno J Math Pures Appl Article The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on [Formula: see text] but rather on [Formula: see text]. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of [Formula: see text] indexed by [Formula: see text]. This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces. Elsevier Science [etc.] 2011-11 /pmc/articles/PMC3230277/ /pubmed/22158824 http://dx.doi.org/10.1016/j.matpur.2011.07.006 Text en © 2011 Elsevier Masson SAS. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license
spellingShingle Article
Dias, Nuno Costa
de Gosson, Maurice
Luef, Franz
Prata, João Nuno
A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
title A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
title_full A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
title_fullStr A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
title_full_unstemmed A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
title_short A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces
title_sort pseudo-differential calculus on non-standard symplectic space; spectral and regularity results in modulation spaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230277/
https://www.ncbi.nlm.nih.gov/pubmed/22158824
http://dx.doi.org/10.1016/j.matpur.2011.07.006
work_keys_str_mv AT diasnunocosta apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT degossonmaurice apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT lueffranz apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT pratajoaonuno apseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT diasnunocosta pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT degossonmaurice pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT lueffranz pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces
AT pratajoaonuno pseudodifferentialcalculusonnonstandardsymplecticspacespectralandregularityresultsinmodulationspaces