Cargando…
Ambient Air Pollution and Apnea and Bradycardia in High-Risk Infants on Home Monitors
Background: Evidence suggests that increased ambient air pollution concentrations are associated with health effects, although relatively few studies have specifically examined infants. Objective: We examined associations of daily ambient air pollution concentrations with central apnea (prolonged pa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230388/ https://www.ncbi.nlm.nih.gov/pubmed/21447453 http://dx.doi.org/10.1289/ehp.1002739 |
Sumario: | Background: Evidence suggests that increased ambient air pollution concentrations are associated with health effects, although relatively few studies have specifically examined infants. Objective: We examined associations of daily ambient air pollution concentrations with central apnea (prolonged pauses in breathing) and bradycardia (low heart rate) events among infants prescribed home cardiorespiratory monitors. Methods: The home monitors record the electrocardiogram, heart rate, and respiratory effort for detected apnea and bradycardia events in high-risk infants [primarily premature and low birth weight (LBW) infants]. From August 1998 through December 2002, 4,277 infants had 8,960 apnea event-days and 29,450 bradycardia event-days in > 179,000 days of follow-up. We assessed the occurrence of apnea and bradycardia events in relation to speciated particulate matter and gaseous air pollution levels using a 2-day average of air pollution (same day and previous day), adjusting for temporal trends, temperature, and infant age. Results: We observed associations between bradycardia and 8-hr maximum ozone [odds ratio (OR) = 1.049 per 25-ppb increase; 95% confidence interval (CI), 1.021–1.078] and 1-hr maximum nitrogen dioxide (OR =1.025 per 20-ppb increase; 95% CI, 1.000–1.050). The association with ozone was robust to different methods of control for time trend and specified correlation structure. In secondary analyses, associations of apnea and bradycardia with pollution were generally stronger in infants who were full term and of normal birth weight than in infants who were both premature and LBW. Conclusions: These results suggest that higher air pollution concentrations may increase the occurrence of apnea and bradycardia in high-risk infants. |
---|