Cargando…

Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors

This paper describes a new method for predicting the detectability of thin gaseous plumes in hyperspectral images. The novelty of this method is the use of basis vectors for each of the spectral channels of a collection instrument to calculate noise-equivalent concentration-pathlengths instead of ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Anderson, Kevin K., Tardiff, Mark F., Chilton, Lawrence K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231236/
https://www.ncbi.nlm.nih.gov/pubmed/22163677
http://dx.doi.org/10.3390/s100908652
_version_ 1782218174750523392
author Anderson, Kevin K.
Tardiff, Mark F.
Chilton, Lawrence K.
author_facet Anderson, Kevin K.
Tardiff, Mark F.
Chilton, Lawrence K.
author_sort Anderson, Kevin K.
collection PubMed
description This paper describes a new method for predicting the detectability of thin gaseous plumes in hyperspectral images. The novelty of this method is the use of basis vectors for each of the spectral channels of a collection instrument to calculate noise-equivalent concentration-pathlengths instead of matching scene pixels to absorbance spectra of gases in a library. This method provides insight into regions of the spectrum where gas detection will be relatively easier or harder, as influenced by ground emissivity, temperature contrast, and the atmosphere. Our results show that data collection planning could be influenced by information about when potential plumes are likely to be over background segments that are most conducive to detection.
format Online
Article
Text
id pubmed-3231236
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-32312362011-12-07 Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors Anderson, Kevin K. Tardiff, Mark F. Chilton, Lawrence K. Sensors (Basel) Article This paper describes a new method for predicting the detectability of thin gaseous plumes in hyperspectral images. The novelty of this method is the use of basis vectors for each of the spectral channels of a collection instrument to calculate noise-equivalent concentration-pathlengths instead of matching scene pixels to absorbance spectra of gases in a library. This method provides insight into regions of the spectrum where gas detection will be relatively easier or harder, as influenced by ground emissivity, temperature contrast, and the atmosphere. Our results show that data collection planning could be influenced by information about when potential plumes are likely to be over background segments that are most conducive to detection. Molecular Diversity Preservation International (MDPI) 2010-09-17 /pmc/articles/PMC3231236/ /pubmed/22163677 http://dx.doi.org/10.3390/s100908652 Text en © 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Anderson, Kevin K.
Tardiff, Mark F.
Chilton, Lawrence K.
Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors
title Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors
title_full Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors
title_fullStr Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors
title_full_unstemmed Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors
title_short Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors
title_sort predicting the detectability of thin gaseous plumes in hyperspectral images using basis vectors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231236/
https://www.ncbi.nlm.nih.gov/pubmed/22163677
http://dx.doi.org/10.3390/s100908652
work_keys_str_mv AT andersonkevink predictingthedetectabilityofthingaseousplumesinhyperspectralimagesusingbasisvectors
AT tardiffmarkf predictingthedetectabilityofthingaseousplumesinhyperspectralimagesusingbasisvectors
AT chiltonlawrencek predictingthedetectabilityofthingaseousplumesinhyperspectralimagesusingbasisvectors