Cargando…
Burst Packet Loss Concealment Using Multiple Codebooks and Comfort Noise for CELP-Type Speech Coders in Wireless Sensor Networks
In this paper, a packet loss concealment (PLC) algorithm for CELP-type speech coders is proposed in order to improve the quality of decoded speech under burst packet loss conditions in a wireless sensor network. Conventional receiver-based PLC algorithms in the G.729 speech codec are usually based o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231404/ https://www.ncbi.nlm.nih.gov/pubmed/22163902 http://dx.doi.org/10.3390/s110505323 |
Sumario: | In this paper, a packet loss concealment (PLC) algorithm for CELP-type speech coders is proposed in order to improve the quality of decoded speech under burst packet loss conditions in a wireless sensor network. Conventional receiver-based PLC algorithms in the G.729 speech codec are usually based on speech correlation to reconstruct the decoded speech of lost frames by using parameter information obtained from the previous correctly received frames. However, this approach has difficulty in reconstructing voice onset signals since the parameters such as pitch, linear predictive coding coefficient, and adaptive/fixed codebooks of the previous frames are mostly related to silence frames. Thus, in order to reconstruct speech signals in the voice onset intervals, we propose a multiple codebook-based approach that includes a traditional adaptive codebook and a new random codebook composed of comfort noise. The proposed PLC algorithm is designed as a PLC algorithm for G.729 and its performance is then compared with that of the PLC algorithm currently employed in G.729 via a perceptual evaluation of speech quality, a waveform comparison, and a preference test under different random and burst packet loss conditions. It is shown from the experiments that the proposed PLC algorithm provides significantly better speech quality than the PLC algorithm employed in G.729 under all the test conditions. |
---|