Cargando…

Adaptive Broadcasting Method Using Neighbor Type Information in Wireless Sensor Networks

Flooding is the simplest and most effective way to disseminate a packet to all nodes in a wireless sensor network (WSN). However, basic flooding makes all nodes transmit the packet at least once, resulting in the broadcast storm problem in a worst case, and in turn, network resources are severely wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Hyocheol, Kim, Jeonghyun, Yoo, Younghwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231423/
https://www.ncbi.nlm.nih.gov/pubmed/22163936
http://dx.doi.org/10.3390/s110605952
Descripción
Sumario:Flooding is the simplest and most effective way to disseminate a packet to all nodes in a wireless sensor network (WSN). However, basic flooding makes all nodes transmit the packet at least once, resulting in the broadcast storm problem in a worst case, and in turn, network resources are severely wasted. Particularly, power is the most valuable resource of WSNs as nodes are powered by batteries, then the waste of energy by the basic flooding lessens the lifetime of WSNs. In order to solve the broadcast storm problem, this paper proposes a dynamic probabilistic flooding that utilizes the neighbor information like the numbers of child and sibling nodes. In general, the more sibling nodes there are, the higher is the probability that a broadcast packet may be sent by one of the sibling nodes. The packet is not retransmitted by itself, though. Meanwhile, if a node has many child nodes its retransmission probability should be high to achieve the high packet delivery ratio. Therefore, these two terms—the numbers of child and sibling nodes—are adopted in the proposed method in order to attain more reliable flooding. The proposed method also adopts the back-off delay scheme to avoid collisions between close neighbors. Simulation results prove that the proposed method outperforms previous flooding methods in respect of the number of duplicate packets and packet delivery ratio.