Cargando…

Laboratory Calibration of a Field Imaging Spectrometer System

A new Field Imaging Spectrometer System (FISS) based on a cooling area CCD was developed. This paper describes the imaging principle, structural design, and main parameters of the FISS sensor. The FISS was spectrally calibrated with a double grating monochromator to determine the center wavelength a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lifu, Huang, Changping, Wu, Taixia, Zhang, Feizhou, Tong, Qingxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231591/
https://www.ncbi.nlm.nih.gov/pubmed/22163746
http://dx.doi.org/10.3390/s110302408
Descripción
Sumario:A new Field Imaging Spectrometer System (FISS) based on a cooling area CCD was developed. This paper describes the imaging principle, structural design, and main parameters of the FISS sensor. The FISS was spectrally calibrated with a double grating monochromator to determine the center wavelength and FWHM of each band. Calibration results showed that the spectral range of the FISS system is 437–902 nm, the number of channels is 344 and the spectral resolution of each channel is better than 5 nm. An integrating sphere was used to achieve absolute radiometric calibration of the FISS with less than 5% calibration error for each band. There are 215 channels with signal to noise ratios (SNRs) greater than 500 (62.5% of the bands). The results demonstrated that the FISS has achieved high performance that assures the feasibility of its practical use in various fields.