Cargando…

A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno, Jaime Sánchez, Muñoz, Diego Ramírez, Cardoso, Susana, Berga, Silvia Casans, Antón, Asunción Edith Navarro, de Freitas, Paulo Jorge Peixeiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231625/
https://www.ncbi.nlm.nih.gov/pubmed/22163748
http://dx.doi.org/10.3390/s110302447
_version_ 1782218250171449344
author Moreno, Jaime Sánchez
Muñoz, Diego Ramírez
Cardoso, Susana
Berga, Silvia Casans
Antón, Asunción Edith Navarro
de Freitas, Paulo Jorge Peixeiro
author_facet Moreno, Jaime Sánchez
Muñoz, Diego Ramírez
Cardoso, Susana
Berga, Silvia Casans
Antón, Asunción Edith Navarro
de Freitas, Paulo Jorge Peixeiro
author_sort Moreno, Jaime Sánchez
collection PubMed
description A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.
format Online
Article
Text
id pubmed-3231625
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-32316252011-12-07 A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor Moreno, Jaime Sánchez Muñoz, Diego Ramírez Cardoso, Susana Berga, Silvia Casans Antón, Asunción Edith Navarro de Freitas, Paulo Jorge Peixeiro Sensors (Basel) Article A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A. Molecular Diversity Preservation International (MDPI) 2011-02-25 /pmc/articles/PMC3231625/ /pubmed/22163748 http://dx.doi.org/10.3390/s110302447 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Moreno, Jaime Sánchez
Muñoz, Diego Ramírez
Cardoso, Susana
Berga, Silvia Casans
Antón, Asunción Edith Navarro
de Freitas, Paulo Jorge Peixeiro
A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor
title A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor
title_full A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor
title_fullStr A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor
title_full_unstemmed A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor
title_short A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor
title_sort non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231625/
https://www.ncbi.nlm.nih.gov/pubmed/22163748
http://dx.doi.org/10.3390/s110302447
work_keys_str_mv AT morenojaimesanchez anoninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT munozdiegoramirez anoninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT cardososusana anoninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT bergasilviacasans anoninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT antonasuncionedithnavarro anoninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT defreitaspaulojorgepeixeiro anoninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT morenojaimesanchez noninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT munozdiegoramirez noninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT cardososusana noninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT bergasilviacasans noninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT antonasuncionedithnavarro noninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor
AT defreitaspaulojorgepeixeiro noninvasivethermaldriftcompensationtechniqueappliedtoaspinvalvemagnetoresistivecurrentsensor