Cargando…

Throughput Fairness Enhancement Using Differentiated Channel Access in Heterogeneous Sensor Networks

Nowadays, with wireless sensor networks (WSNs) being widely applied to diverse applications, heterogeneous sensor networks (HSNs), which can simultaneously support multiple sensing tasks in a common sensor field, are being considered as the general form of WSN system deployment. In HSNs, each applic...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Eui-Jik, Shon, Taeshik, Park, James Jong Hyuk, Jeong, Young-Sik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231697/
https://www.ncbi.nlm.nih.gov/pubmed/22163976
http://dx.doi.org/10.3390/s110706629
Descripción
Sumario:Nowadays, with wireless sensor networks (WSNs) being widely applied to diverse applications, heterogeneous sensor networks (HSNs), which can simultaneously support multiple sensing tasks in a common sensor field, are being considered as the general form of WSN system deployment. In HSNs, each application generates data packets with a different size, thereby resulting in fairness issues in terms of the network performance. In this paper, we present the design and performance evaluation of a differentiated channel access scheme (abbreviated to DiffCA) to resolve the fairness problem in HSNs. DiffCA achieves fair performance among the application groups by providing each node with an additional backoff counter, whose value varies according to the size of the packets. A mathematical model based on the discrete time Markov chain is presented and is analyzed to measure the performance of DiffCA. The numerical results show that the performance degradation of disadvantaged application groups can be effectively compensated for by DiffCA. Simulation results are given to verify the accuracy of the numerical model.